Skip to content

deep-diver/dvc-practice

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

dvc-practice

  1. GitHub repo creation
  2. Clone the GitHub repo

  1. Run dvc init
  2. Download MNIST dataset from here
  3. make MNIST dataset to be half link
  4. place MNIST dataset under data/train.csv
  5. Run dvc add data/train.csv
  6. Run dvc remote add my_stroage -d /tmp/dvc-test
  7. Run git add .
  8. Run git commit -m "initial commit"
  9. Run dvc push

  1. Create params.yaml
  2. Create src/
  3. Create src/split.py
  4. Run dvc run -n split -p split.ratio -d src/split.py -d data/train.csv -o data/prepared python src/split.py data/train.csv
  5. Create src/preprocessing.py
  6. Run dvc run -n preprocess -d src/preprocessing.py -d data/prepared -o data/preprocessed python src/preprocessing.py data/prepared
  7. Create src/train.py
  8. Run dvc run -n train -d src/train.py -d data/preprocessed -o data/model python src/train.py data/preprocessed data/model
  9. Create src/evaluate.py [ ] Run `dvc run -n evaluate -d src/evaluate.py -d data/model

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages