Codes for the paper TeAST: Temporal Knowledge Graph Embedding via Archimedean Spiral Timeline accepted by the ACL 2023.
Create a conda environment with pytorch and scikit-learn :
conda create --name teast_env python=3.8
source activate teast_env
conda install --file requirements.txt -c pytorch
python process_icews.py
python process_gdelt.py
This will create the files required to compute the filtered metrics.
In order to reproduce the results of TeAST on the four datasets in the paper, run the following commands
python learner.py --dataset ICEWS14 --emb_reg 0.0025 --time_reg 0.01
python learner.py --dataset ICEWS05-15 --emb_reg 0.002 --time_reg 0.1
python learner.py --dataset GDELT --emb_reg 0.003 --time_reg 0.003
We refer to the code of TNTComplEx and TeLM. Thanks for their great contributions!
@inproceedings{li-etal-2023-teast,
title = "{T}e{AST}: Temporal Knowledge Graph Embedding via Archimedean Spiral Timeline",
author = "Li, Jiang and
Su, Xiangdong and
Gao, Guanglai",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.862",
doi = "10.18653/v1/2023.acl-long.862",
pages = "15460--15474"
}