We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
$X$を確率変数とする,任意の$t>0$と$\lambda \in \mathbb{R}$に対して $$ \mathbb{P}\{ |X - \mathbb{E}X| \geq t\} \leq e^{\psi_{X}(\lambda)-\lambda t}. $$ ここで,$\psi_{X}$は$X$の生成母関数の対数,$\psi_{X}(\lambda):=\log \mathbb{E}\left[e^{\lambda X} \right]$.
Markovの不等式(#1)から証明できる
この不等式により,期待値周りの確率集中は生成母関数の対数$\psi_X$を評価することに帰着される
Boucheron et al. Concentration inequalities: A Nonasymptotic Theory of Independence (2013)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
ステートメント
$$
\mathbb{P}\{ |X - \mathbb{E}X| \geq t\} \leq e^{\psi_{X}(\lambda)-\lambda t}.
$$
ここで,$\psi_{X}$は$X$の生成母関数の対数,$\psi_{X}(\lambda):=\log \mathbb{E}\left[e^{\lambda X} \right]$.
証明の概要
Markovの不等式(#1)から証明できる
コメント
この不等式により,期待値周りの確率集中は生成母関数の対数$\psi_X$を評価することに帰着される
出典
Boucheron et al. Concentration inequalities: A Nonasymptotic Theory of Independence (2013)
The text was updated successfully, but these errors were encountered: