-
Notifications
You must be signed in to change notification settings - Fork 2
/
k_bbq_train.m
125 lines (109 loc) · 3.92 KB
/
k_bbq_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
function model = k_bbq_train(X,Y,model)
% K_BBQ_TRAIN Kernel Bound on Bias Query Algorithm
%
% MODEL = K_ BBQ_TRAIN(X,Y,MODEL) trains an classifier according to the
% Bound on Bias Query Algorithm, with kernels. The algorithm will query
% a label only on certain rounds.
%
% Additional parameters:
% - model.k is exponent of the query rate.
% Default value is 1/2.
%
% References:
% - Orabona, F., Cesa-Bianchi, N. (2011).
% Better Selective Sampling Algorithms.
% Proceedings of the 26th International Conference on Machine Learning.
%
% - Cesa-Bianchi, N., Gentile, C., & Orabona, F. (2009)
% Robust Bounds for Classification via Selective Sampling.
% Proceedings of the 26th International Conference on Machine
% Learning.
% This file is part of the DOGMA library for MATLAB.
% Copyright (C) 2009-2011, Francesco Orabona
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Contact the author: francesco [at] orabona.com
n = length(Y); % number of training samples
if isfield(model,'iter')==0
model.iter = 0;
model.beta = [];
model.beta2 = [];
model.errTot = 0;
model.numSV = zeros(numel(Y),1);
model.aer = zeros(numel(Y),1);
model.pred = zeros(numel(Y),1);
model.Kinv = 0;
model.Y_S = [];
model.N = 0;
model.numQueries = 0;
model.nacr = zeros(numel(Y),1);
end
if isfield(model,'k')==0
model.k = 1/2;
end
for i = 1:n
model.iter = model.iter+1;
if numel(model.S)>0
if isempty(model.ker)
K_f = X(model.S,i);
Kii = X(i,i);
else
K_f = feval(model.ker,model.SV,X(:,i),model.kerparam);
Kii = feval(model.ker,X(:,i),X(:,i),model.kerparam);
end
val_f = model.beta*K_f;
else
if isempty(model.ker)
Kii = X(i,i);
else
Kii = feval(model.ker,X(:,i),X(:,i),model.kerparam);
end
val_f = 0;
K_f = 0;
end
Yi = Y(i);
model.errTot = model.errTot+(sign(val_f)~=Yi);
model.aer(model.iter) = model.errTot/model.iter;
model.nacr(model.iter) = (model.iter-model.errTot)/model.numQueries;
coeff = K_f'*model.Kinv;
delta = Kii-coeff*K_f;
val_f = val_f/(delta+1);
model.pred(model.iter) = val_f;
rt = delta/(delta+1);
if rt>0.5*model.iter^(-model.k)
model.numQueries = model.numQueries+1;
model.S(end+1) = model.iter;
if ~isempty(model.ker)
model.SV(:,end+1) = X(:,i);
end
model.Y_S(end+1) = Yi;
if numel(model.S)>1
tmp = [model.Kinv, zeros(numel(model.S)-1,1);zeros(1,numel(model.S))];
tmp = tmp+[coeff'; -1]*[coeff'; -1]'/(delta+1);
else
tmp = full((Kii+1)^-1);
end
model.Kinv = tmp;
model.beta = model.Y_S*model.Kinv;
model.N = model.N+1;
end
model.numSV(model.iter) = numel(model.S);
if mod(i,model.step)==0
fprintf('#%.0f SV:%5.2f(%d)\tAER:%5.2f\tQueried Labels:%5.2f(%d)\n', ...
ceil(i/1000),numel(model.S)/model.iter*100,numel(model.S),...
model.aer(model.iter)*100,model.numQueries/model.iter*100,...
model.numQueries);
end
end