-
Notifications
You must be signed in to change notification settings - Fork 2
/
k_pa_train.m
executable file
·103 lines (89 loc) · 3.24 KB
/
k_pa_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
function model = k_pa_train(X,Y,model)
% K_PA_TRAIN Kernel Passive-Aggressive algorithm
%
% MODEL = K_PA_TRAIN(X,Y,MODEL) trains an classifier according to the
% Passive-Aggressive algorithm, PA-I and PA-II variants, using kernels.
%
% Additional parameters:
% - model.C is the aggressiveness parameter, used to trade-off the loss
% on the current sample with the update on the current hyperplane.
% Default value is 1.
% - model.update is the used to select the update rule. A value of 1
% selectes PA-I, 2 selects PA-II.
% Default value is 1.
%
% References:
% - Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006).
% Online Passive-Aggressive Algorithms.
% Journal of Machine Learning Research 7(Mar), (pp. 551-585).
% This file is part of the DOGMA library for MATLAB.
% Copyright (C) 2009-2011, Francesco Orabona
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Contact the author: francesco [at] orabona.com
n = length(Y); % number of training samples
if isfield(model,'iter')==0
model.iter=0;
model.beta=[];
model.beta2=[];
model.errTot=0;
model.numSV=zeros(numel(Y),1);
model.aer=zeros(numel(Y),1);
model.pred=zeros(numel(Y),1);
end
if isfield(model,'update')==0
model.update=1; %default update using PA-I
end
if isfield(model,'C')==0
model.C=1;
end
for i=1:n
model.iter=model.iter+1;
if numel(model.S)>0
if isempty(model.ker)
K_f=X(i,model.S);
else
K_f=feval(model.ker,model.SV,X(:,i),model.kerparam);
end
val_f=model.beta*K_f;
else
val_f=0;
end
model.errTot=model.errTot+(sign(val_f)~=Y(i));
model.aer(model.iter)=model.errTot/model.iter;
model.pred(model.iter)=val_f;
if Y(i)*val_f<=1
if isempty(model.ker)
Kii=X(i,i);
else
Kii=feval(model.ker,X(:,i),X(:,i),model.kerparam);
model.SV(:,end+1)=X(:,i);
end
if model.update==1
new_beta=min((1-val_f*Y(i))/Kii,model.C);
else
new_beta=(1-val_f*Y(i))/(Kii+1/(2*model.C));
end
model.beta(end+1)=Y(i)*new_beta;
model.S(end+1)=model.iter;
model.beta2(end+1)=0;
end
model.beta2=model.beta2+model.beta;
model.numSV(model.iter)=numel(model.S);
if mod(i,model.step)==0
fprintf('#%.0f SV:%5.2f(%d)\tAER:%5.2f\n', ...
ceil(i/1000),numel(model.S)/model.iter*100,numel(model.S),model.aer(model.iter)*100);
end
end