-
Notifications
You must be signed in to change notification settings - Fork 2
/
pnorm_train.m
82 lines (68 loc) · 2.6 KB
/
pnorm_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function model = pnorm_train(X,Y,model)
% PNORM_TRAIN p-Norm algorithm
%
% MODEL = PNORM_TRAIN(X,Y,MODEL) trains a classifier according to the
% p-Norm algorithm.
%
% Additional parameters:
% - model.p is the norm used by the algorithm. It must be bigger than or
% equal to 2.
% Default value is 2*log(number of features).
%
% References:
% - Gentile, C. (2003).
% The Robustness of the p-Norm Algorithms.
% Machine Learning 53, (pp. 265–299).
% This file is part of the DOGMA library for MATLAB.
% Copyright (C) 2009-2011, Francesco Orabona
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Contact the author: francesco [at] orabona.com
n = length(Y); % number of training samples
if isfield(model,'iter')==0
model.iter=0;
model.w=spalloc(1,size(X,1),1);
model.w2=zeros(1,size(X,1));
model.errTot=0;
model.numSV=zeros(numel(Y),1);
model.aer=zeros(numel(Y),1);
model.pred=zeros(numel(Y),1);
model.theta=spalloc(1,size(X,1),1);
end
if isfield(model,'p')==0
model.p=max(2*log(size(X,1)),2);
end
model.q=1/(1-1/model.p);
for i=1:n
model.iter=model.iter+1;
val_f=model.w*X(:,i);
Yi=Y(i);
model.errTot=model.errTot+(sign(val_f)~=Yi);
model.aer(model.iter)=model.errTot/model.iter;
model.pred(model.iter)=val_f;
if Yi*val_f<=0
model.theta=model.theta+Yi*X(:,i)';
abs_theta=abs(model.theta);
%model.w=(sign(model.theta).*abs_theta.^(model.p-1))/(eps+norm(abs_theta,model.p)^(model.p-2));
model.w=model.theta.*(abs_theta/(eps+norm(abs_theta,model.p))).^(model.p-2);
model.S(end+1)=model.iter;
end
model.w2=model.w2+model.w;
model.numSV(model.iter)=numel(model.S);
if mod(i,model.step)==0
fprintf('#%.0f SV:%5.2f(%d)\tAER:%5.2f\n', ...
ceil(i/1000),numel(model.S)/model.iter*100,numel(model.S),model.aer(model.iter)*100);
end
end