-
Notifications
You must be signed in to change notification settings - Fork 2
/
sop_adapt_train.m
84 lines (69 loc) · 2.51 KB
/
sop_adapt_train.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
function model = sop_adapt_train(X,Y,model)
% SOP_ADAPT_TRAIN Second-order Perceptron algorithm, adaptive version
%
% MODEL = SOP_TRAIN(X,Y,MODEL) trains an classifier according to the
% Second-order Perceptron algorithm, adaptive variant.
%
% Additional parameters:
% - model.c is the aggressiveness parameter, used to trade-off the loss
% and the regularization.
% Default value is 1.
%
% References:
% - Cesa-Bianchi, N., Conconi, A., & Gentile, C. (2005).
% A Second Order Perceptron Algorithm.
% SIAM J. COMPUT. 34(3), (pp. 640-668).
% This file is part of the DOGMA library for MATLAB.
% Copyright (C) 2009-2011, Francesco Orabona
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%
% Contact the author: francesco [at] orabona.com
n = length(Y);
d=size(X,1);
if isfield(model,'c')==0
model.c=1;
end
if isfield(model,'iter')==0
model.iter=0;
model.w=zeros(1,d);
model.w2=zeros(1,d);
model.errTot=0;
model.numSV=zeros(numel(Y),1);
model.aer=zeros(numel(Y),1);
model.pred=zeros(numel(Y),1);
model.SS=zeros(d);
model.v=zeros(d,1);
end
for i=1:n
model.iter=model.iter+1;
SSnew=model.SS+X(:,i)*X(:,i)';
model.w=(eye(d)*model.errTot*model.c+SSnew)^-1*model.v;
%model.w2=model.w2+model.w;
val_f=model.w'*X(:,i);
Yi=Y(i);
model.errTot=model.errTot+(sign(val_f)~=Yi);
model.aer(model.iter)=model.errTot/model.iter;
model.pred(model.iter)=val_f;
if Yi*val_f<=0
model.v=model.v+Yi*X(:,i);
model.S(end+1)=model.iter;
model.SV(:,end+1)=X(:,i);
end
model.numSV(model.iter)=numel(model.S);
if mod(i,model.step)==0
fprintf('#%.0f SV:%5.2f(%d)\tAER:%5.2f\n', ...
ceil(i/1000),numel(model.S)/model.iter*100,numel(model.S),model.aer(model.iter)*100);
end
end