-
Notifications
You must be signed in to change notification settings - Fork 1
tsnnls is a lightweight solver for the sparse nonnegative least squares problem based on TAUCS
License
LGPL-3.0 and 2 other licenses found
Licenses found
LGPL-3.0
LICENSE
GPL-3.0
COPYING
LGPL-3.0
COPYING.LESSER
designbynumbers/tsnnls
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
tsnnls 2.4.5 - A fast block pivoting algorithm for sparse linear least squares problems with non-negative variables designed to be embedded in applications Jason Cantarella Michael Piatek Eric Rawdon 28 September 2022 Contents 0. What is tsnnls? 1. Building 2. License 3. Quick start 4. Supporting functions 5. References 0. tsnnls is a fast solver for least-squares problems in the form Ax = b under the constraint that all entries in the solution vector x are non-negative. The solver works for the case when the matrix A has full column rank (and so there is a unique solution). The tsnnls code is primarily designed for large sparse problems, but works well for dense problems too. We designed tsnnls to be called from larger applications, and are including it in a large simulation ourselves. We would be interested to hear about your application for tsnnls-- please feel free to write to us and tell us about your uses for the code! The tsnnls library also includes a fast unconstrained least-squares solver based on the method of normal equations. For well-conditioned problems, this is a reasonable solution. For ill-conditioned problems, you are probably better off with an iterative method like the Stanford LSQR code, which is also freely available on the web. For a more complete report on tsnnls, see our paper "tsnnls: A solver for large sparse least squares problems with non-negative variables", which is available on arXiv. 1. Building TSNNLS uses the standard GNU Autotools ./configure make make check make install method for installation. TSNNLS depends on OpenBlas to provide LAPACK and Blas functions; if you install via autotools, you may have to provide ./configure with the location of the cblas.h and lapacke.h headers and the libopenblas.dylib library. To build the test program tsnnls_test, you will need to install the argparse library. Installation can also be accomplished via Homebrew using the cantarellalab tap: brew tap designbynumbers/cantarellalab brew install tsnnls See the file INSTALL in the main distribution directory for more information. Also note that included with our distribution is a limited version of the TAUCS package for sparse matrix manipulation. Future updates to this library may provide performance benefits for tsnnls. See http://www.tau.ac.il/~stoledo/taucs/ for information on the TAUCS library. We include source from version 2.2. A statement regarding the TAUCS license and availability information is provided in 'TAUCS_LICENSE_AND_AVAILABILITY' in the same directory as this readme. 2. License This software is distributed under the terms of the GNU Lesser GPL. A full description of the terms of this license can be found in the file 'LICENSE, COPYING, and COPYING.LESSER' in the same directory as this readme, or the license can be read on the web at http://www.gnu.org/licenses/gpl.txt 3. Quick start Once you have built the library, the main functionality is exposed through the header tsnnls.h. The functions of primary interest are: taucs_ccs_matrix* taucs_construct_sorted_ccs_matrix( double* values, int cols, int rows ); This function takes an array of double values in row major order representing a dense matrix of size rows by cols and converts it into a compressed column structure for use with our algorithm. For a complete discussion of the taucs_ccs_matrix structure, see the taucs.pdf documentation included with this package. taucs_double* t_snnls( taucs_ccs_matrix *A_original_ordering, taucs_double *b, double* outResidualNorm, double inRelErrTolerance, int inPrintErrorWarnings ); This function solves the problem Ax = b in the least squares sense subject to the contraint that x > 0. The value returned is an array of doubles of size A->n, where A->n is the number of columns of the matrix A. b must be of size A->m where A-> is the number of rows of the matrix A. residualNorm is the 2-norm of the residual b-Ax. inRelErrTolerance is the threshold for relative error (estimated using (condition number)^2*(machine epsilon)) at which to use the more numerically sensitive LSQR algorithm (see references). If you *never* wish to use LSQR steps (for maximum speed) pass a value greater than 1 for this parameter. If you always want to perform a final LSQR step (for maximum accuracy), pass a value less than 0 for this parameter. The latter practice is recommended. double* t_lsqr(taucs_ccs_matrix *A, taucs_double *b); This function solves the unconstrained problem Ax=b in the least squares sense using a Cholesky factorization. For examples of how these functions can be used in practice, see the tsnnls test application source in the file 'tsnnls_test.c' in the same directory as this readme. 4. Supporting functions A variety of debugging and support functions are included with tsnnls that may be useful in your application. We describe several here: double taucs_rcond( taucs_ccs_matrix* A ); This function returns an estimate of the reciprocal condition number of A as computed by LAPACK. double* taucs_convert_ccs_to_doubles( const taucs_ccs_matrix* A ); This function converts a sparse matrix A to an array of doubles in row major order of size A->m*A->n. taucs_ccs_matrix* taucs_ccs_transpose( const taucs_ccs_matrix* A ); This function returns a sparse representation of the transpose of A. void taucs_print_ccs_matrix( const taucs_ccs_matrix* A ); This function prints a representation of the sparse matrix A on stdout. See the tsnnls.h header for a complete list of functions available from the library. 5. References Version 2.0 of tsnnls uses the block3 algorithm of Mikael Adlers. A description of the algorithm can be found in his licentiat thesis "Sparse Least Squares Problems with Box Constraints", available at http://www.mai.liu.se/~milun/ The self-test code in tsnnls 2.0 and higher uses a problem generation strategy proposed in @article {MR95a:90059, AUTHOR = {Portugal, Lu{\'{\i}}s F. and J{\'u}dice, Joaqu{\'{\i}}m J. and Vicente, Lu{\'{\i}}s N.}, TITLE = {A comparison of block pivoting and interior-point algorithms for linear least squares problems with nonnegative variables}, JOURNAL = {Math. Comp.}, FJOURNAL = {Mathematics of Computation}, VOLUME = {63}, YEAR = {1994}, NUMBER = {208}, PAGES = {625--643}, ISSN = {0025-5718}, CODEN = {MCMPAF}, MRCLASS = {90C20 (65K05)}, MRNUMBER = {95a:90059}, The paper is stored on JSTOR. LSQR sparse unconstrained least squares algorithm: http://www.stanford.edu/group/SOL/software.html LAPACK and BLAS: http://www.netlib.org/lapack/ TAUCS library for sparse matrices: http://www.tau.ac.il/~stoledo/taucs/
About
tsnnls is a lightweight solver for the sparse nonnegative least squares problem based on TAUCS
Topics
Resources
License
LGPL-3.0 and 2 other licenses found
Licenses found
LGPL-3.0
LICENSE
GPL-3.0
COPYING
LGPL-3.0
COPYING.LESSER
Stars
Watchers
Forks
Packages 0
No packages published