Skip to content

dffml/dffml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logo-dark Logo-light Gitpod Ready-to-Code codecov CII OpenSSF Scorecard Gitter chat PyPI version

Mission Statement

As we all know the Machine Learning space has a lot of tools and libraries for creating pipelines to train, test & deploy models, and dealing with these many different APIs can be cumbersome.

Our project aims to make this process a breeze by introducing interoperability under a modular and easily extensible API. DFFML’s plugin-based architecture makes it a swiss army knife of ML research & MLOps.

We heavily rely on DataFlows, which are basically directed graphs. We are also working on a WebUI to make dataflows completely a drag’n drop experience. Currently, all of our functionalities are accessible through Python API, CLI, and HTTP APIs.

We broadly have two types of audience here, one is Citizen Data Scientists and ML researchers, who’d probably use the WebUI to experiment and design models. MLOps people will deploy models and set up data processing pipelines via the HTTP/CLI/Python APIs.

Documentation

Documentation for the latest release is hosted at https://dffml.github.io/dffml/

Documentation for the main branch is hosted at https://dffml.github.io/dffml/main/index.html

Contributing

The contributing doc will guide you through getting setup and contributing to DFFML.

Help

License

DFFML is distributed under the MIT License.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages