Skip to content

dhryougit/AFM

Repository files navigation

Robust Image Denoising through Adversarial Frequency Mixup (2024 CVPR) [paper]

Installation

This implementation based on BasicSR which is a open source toolbox for image/video restoration tasks and NAFNet

python 3.8.8
pytorch 1.9.0
cuda 11.3
git clone https://github.com/dhryougit/AFM.git
cd AFM
pip install -r requirements.txt
python setup.py develop --no_cuda_ext

We used NVIDIA RTX A6000 D6 48GB for trianing our models.

QuickStart

For training

python3 -m torch.distributed.launch --nproc_per_node=4 --master_port=4321 basicsr/train.py -opt options/train/DnCNN.yml --name=DnCNN-afm-b --afm_type=AFM_B --seed=10 --afm_rate=0.8 --afm_easy_rate=0.3 --launcher pytorch

For test

python3 -m torch.distributed.launch --nproc_per_node=1 basicsr/test.py -opt options/test/DnCNN.yml -name=AFM_test --launcher pytorch

Dataset

Training dataset : SIDD

Evaluation datasets : Poly, CC, HighISO, iPhone, Huawei.

Additioanl real-world noise datasets can be downloaded from "https://github.com/ZhaomingKong/Denoising-Comparison"

Results and Pre-trained model

Dataset Poly CC HighISO iPhone Huawei OOD Avg.
PSRN 37.75 36.84 39.17 40.65 38.39 38.56
SSIM 0.9804 0.9830 0.9801 0.9777 0.9683 0.9779

Pre-trained model of our Dncnn trained on AFM-B can be downloaded from (https://drive.google.com/file/d/1uPJP2zNc4ViFc1QU7TXGAwrFIEScBJvL/view?usp=sharing)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages