Code implementation for : Graph Neural Network-Based Anomaly Detection in Multivariate Time Series(AAAI'21)
I studied the code at https://github.com/d-ailin/GDN and tried to improve it myself.
Trained model parameters will be saved at 'model.pt'
This code is for cpu.
You can set hyperparameters by modifying config={} at line 94 of main.py.
conda create --name pyg python=3.6
conda activate pyg
conda install pytorch==1.5.1 cudatoolkit=10.2 -c pytorch
pip install --no-index torch-scatter -f https://pytorch-geometric.com/whl/torch-1.5.0+cu102.html
pip install --no-index torch-cluster -f https://pytorch-geometric.com/whl/torch-1.5.0+cu102.html
pip install --no-index torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.5.0+cu102.html
pip install torch-geometric==1.5.0
pip install --no-index torch-sparse -f https://pytorch-geometric.com/whl/torch-1.5.0+cu102.html
python main.py