Skip to content

diegochine/pyagents

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyAgents: a library of DRL algorithms

Agents

Currently, the following algorithms have been implemented:

Usage

A demo script train.py is provided to train the implemented agents on some classical RL environments. Hyperparameters can be customized by using gin configuration files, as described below.

python train.py [-h] [-a AGENT] [-e ENV] [-n NUM_ENVS] [-c CONFIG_DIR] 
               [-o OUTPUT_DIR] [-tv TEST_VER] 
               [-s SEED] [--video | --no-video]

Command line arguments:

Argument Description
-h, --help Shows help message
-a AGENT, --agent AGENT Algorithm to train (see choices above)
-e ENV, --env ENV Environment to use (see available ones in train.py)
-n NUM_ENVS, --num-envs NUM_ENVS Number of parallel training envs (vectorized environments)
-c CONFIG_DIR, --config-dir CONFIG_DIR Path to directory containing .gin config files (see gins for examples)
-o OUTPUT_DIR, --output-dir OUTPUT_DIR Either directory to save models (training) or directory to load models from (testing)
-tv TEST_VER, --test-ver TEST_VER If provided, load and test version tv of the agent in directory OUTPUT_DIR
-s SEED, --seed SEED (default: 42) random seed
--video, --no-video (default: False) if True, record testing video every now and then