Skip to content

dkoutsou/ICU-challenge

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

ICU Challenge

In this project we classified on 7 tasks using an XGBoost Classifier and also printed the feature importance so as to see which features help in the classification.

Instructions on how to run the project.

  • Create a virtualenvironment and install requirements.txt

  • Example usage of an argparser

     -> % python code/main.py -h
     usage: main.py [-h] [-f {tune,train_eval}] [-d DATA] [-l LABELS]
     
     optional arguments:
       -h, --help            show this help message and exit
       -f {tune,train_eval}, --function {tune,train_eval}
                             choose the function of the code
       -d DATA, --data DATA  choose the folder where the data is
       -l LABELS, --labels LABELS
                             choose the folder where the labels are
    
  • An example usage is (takes about 5-10 minutes for the full output):

     python code/main.py -f train_eval -d /path/to/data -l /path/to/labels
    
  • An example output where we can see our final classification scores as well as the most important features:

    	Low SA02
      Most important feature, Oxygen saturation in timestep 2
      Low heartrate
      Most important feature, Respiratory rate in timestep 0
      Low respiration
      Most important feature, Heart rate in timestep 1
      Low Systemic Mean
      Most important feature, Heart rate in timestep 1
      High Heartrate
      Most important feature, Respiratory rate in timestep 0
      High respiration
      Most important feature, Respiratory rate in timestep 1
      High Systemic Mean
      Most important feature, Heart rate in timestep 2
      +--------------------+--------------------+--------------------+
      |        Task        |       AUROC        |       AURPC        |
      +--------------------+--------------------+--------------------+
      |      Low SA02      | 0.9912229148357453 | 0.991762160142757  |
      |   Low heartrate    | 0.9924621118928509 | 0.9925487250898325 |
      |  Low respiration   | 0.9896811148978384 | 0.9889808977160514 |
      | Low Systemic Mean  | 0.988212057593581  | 0.9906099666233024 |
      |   High Heartrate   | 0.9918989261768103 | 0.9891691887319317 |
      |  High respiration  | 0.9539927285772434 | 0.9551514355480142 |
      | High Systemic Mean | 0.9930555555555556 | 0.9934091623448059 |
      +--------------------+--------------------+--------------------+
    
  • If you want you can also run the gridsearch to see why we chose these hyperparameters (but it will take 2-3 days on a single core): python code/main.py -f tune -d /path/to/data -l /path/to/labels

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages