-
-
Notifications
You must be signed in to change notification settings - Fork 8.7k
/
callbacks.R
837 lines (765 loc) · 30.5 KB
/
callbacks.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
#' Callback closures for booster training.
#'
#' These are used to perform various service tasks either during boosting iterations or at the end.
#' This approach helps to modularize many of such tasks without bloating the main training methods,
#' and it offers .
#'
#' @details
#' By default, a callback function is run after each boosting iteration.
#' An R-attribute \code{is_pre_iteration} could be set for a callback to define a pre-iteration function.
#'
#' When a callback function has \code{finalize} parameter, its finalizer part will also be run after
#' the boosting is completed.
#'
#' WARNING: side-effects!!! Be aware that these callback functions access and modify things in
#' the environment from which they are called from, which is a fairly uncommon thing to do in R.
#'
#' To write a custom callback closure, make sure you first understand the main concepts about R environments.
#' Check either R documentation on \code{\link[base]{environment}} or the
#' \href{http://adv-r.had.co.nz/Environments.html}{Environments chapter} from the "Advanced R"
#' book by Hadley Wickham. Further, the best option is to read the code of some of the existing callbacks -
#' choose ones that do something similar to what you want to achieve. Also, you would need to get familiar
#' with the objects available inside of the \code{xgb.train} and \code{xgb.cv} internal environments.
#'
#' @seealso
#' \code{\link{cb.print.evaluation}},
#' \code{\link{cb.evaluation.log}},
#' \code{\link{cb.reset.parameters}},
#' \code{\link{cb.early.stop}},
#' \code{\link{cb.save.model}},
#' \code{\link{cb.cv.predict}},
#' \code{\link{xgb.train}},
#' \code{\link{xgb.cv}}
#'
#' @name callbacks
NULL
#
# Callbacks -------------------------------------------------------------------
#
#' Callback closure for printing the result of evaluation
#'
#' @param period results would be printed every number of periods
#' @param showsd whether standard deviations should be printed (when available)
#'
#' @details
#' The callback function prints the result of evaluation at every \code{period} iterations.
#' The initial and the last iteration's evaluations are always printed.
#'
#' Callback function expects the following values to be set in its calling frame:
#' \code{bst_evaluation} (also \code{bst_evaluation_err} when available),
#' \code{iteration},
#' \code{begin_iteration},
#' \code{end_iteration}.
#'
#' @seealso
#' \code{\link{callbacks}}
#'
#' @export
cb.print.evaluation <- function(period = 1, showsd = TRUE) {
callback <- function(env = parent.frame()) {
if (length(env$bst_evaluation) == 0 ||
period == 0 ||
NVL(env$rank, 0) != 0)
return()
i <- env$iteration
if ((i - 1) %% period == 0 ||
i == env$begin_iteration ||
i == env$end_iteration) {
stdev <- if (showsd) env$bst_evaluation_err else NULL
msg <- format.eval.string(i, env$bst_evaluation, stdev)
cat(msg, '\n')
}
}
attr(callback, 'call') <- match.call()
attr(callback, 'name') <- 'cb.print.evaluation'
callback
}
#' Callback closure for logging the evaluation history
#'
#' @details
#' This callback function appends the current iteration evaluation results \code{bst_evaluation}
#' available in the calling parent frame to the \code{evaluation_log} list in a calling frame.
#'
#' The finalizer callback (called with \code{finalize = TURE} in the end) converts
#' the \code{evaluation_log} list into a final data.table.
#'
#' The iteration evaluation result \code{bst_evaluation} must be a named numeric vector.
#'
#' Note: in the column names of the final data.table, the dash '-' character is replaced with
#' the underscore '_' in order to make the column names more like regular R identifiers.
#'
#' Callback function expects the following values to be set in its calling frame:
#' \code{evaluation_log},
#' \code{bst_evaluation},
#' \code{iteration}.
#'
#' @seealso
#' \code{\link{callbacks}}
#'
#' @export
cb.evaluation.log <- function() {
mnames <- NULL
init <- function(env) {
if (!is.list(env$evaluation_log))
stop("'evaluation_log' has to be a list")
mnames <<- names(env$bst_evaluation)
if (is.null(mnames) || any(mnames == ""))
stop("bst_evaluation must have non-empty names")
mnames <<- gsub('-', '_', names(env$bst_evaluation))
if (!is.null(env$bst_evaluation_err))
mnames <<- c(paste0(mnames, '_mean'), paste0(mnames, '_std'))
}
finalizer <- function(env) {
env$evaluation_log <- as.data.table(t(simplify2array(env$evaluation_log)))
setnames(env$evaluation_log, c('iter', mnames))
if (!is.null(env$bst_evaluation_err)) {
# rearrange col order from _mean,_mean,...,_std,_std,...
# to be _mean,_std,_mean,_std,...
len <- length(mnames)
means <- mnames[seq_len(len / 2)]
stds <- mnames[(len / 2 + 1):len]
cnames <- numeric(len)
cnames[c(TRUE, FALSE)] <- means
cnames[c(FALSE, TRUE)] <- stds
env$evaluation_log <- env$evaluation_log[, c('iter', cnames), with = FALSE]
}
}
callback <- function(env = parent.frame(), finalize = FALSE) {
if (is.null(mnames))
init(env)
if (finalize)
return(finalizer(env))
ev <- env$bst_evaluation
if (!is.null(env$bst_evaluation_err))
ev <- c(ev, env$bst_evaluation_err)
env$evaluation_log <- c(env$evaluation_log,
list(c(iter = env$iteration, ev)))
}
attr(callback, 'call') <- match.call()
attr(callback, 'name') <- 'cb.evaluation.log'
callback
}
#' Callback closure for resetting the booster's parameters at each iteration.
#'
#' @param new_params a list where each element corresponds to a parameter that needs to be reset.
#' Each element's value must be either a vector of values of length \code{nrounds}
#' to be set at each iteration,
#' or a function of two parameters \code{learning_rates(iteration, nrounds)}
#' which returns a new parameter value by using the current iteration number
#' and the total number of boosting rounds.
#'
#' @details
#' This is a "pre-iteration" callback function used to reset booster's parameters
#' at the beginning of each iteration.
#'
#' Note that when training is resumed from some previous model, and a function is used to
#' reset a parameter value, the \code{nrounds} argument in this function would be the
#' the number of boosting rounds in the current training.
#'
#' Callback function expects the following values to be set in its calling frame:
#' \code{bst} or \code{bst_folds},
#' \code{iteration},
#' \code{begin_iteration},
#' \code{end_iteration}.
#'
#' @seealso
#' \code{\link{callbacks}}
#'
#' @export
cb.reset.parameters <- function(new_params) {
if (typeof(new_params) != "list")
stop("'new_params' must be a list")
pnames <- gsub("\\.", "_", names(new_params))
nrounds <- NULL
# run some checks in the beginning
init <- function(env) {
nrounds <<- env$end_iteration - env$begin_iteration + 1
if (is.null(env$bst) && is.null(env$bst_folds))
stop("Parent frame has neither 'bst' nor 'bst_folds'")
# Some parameters are not allowed to be changed,
# since changing them would simply wreck some chaos
not_allowed <- pnames %in%
c('num_class', 'num_output_group', 'size_leaf_vector', 'updater_seq')
if (any(not_allowed))
stop('Parameters ', paste(pnames[not_allowed]), " cannot be changed during boosting.")
for (n in pnames) {
p <- new_params[[n]]
if (is.function(p)) {
if (length(formals(p)) != 2)
stop("Parameter '", n, "' is a function but not of two arguments")
} else if (is.numeric(p) || is.character(p)) {
if (length(p) != nrounds)
stop("Length of '", n, "' has to be equal to 'nrounds'")
} else {
stop("Parameter '", n, "' is not a function or a vector")
}
}
}
callback <- function(env = parent.frame()) {
if (is.null(nrounds))
init(env)
i <- env$iteration
pars <- lapply(new_params, function(p) {
if (is.function(p))
return(p(i, nrounds))
p[i]
})
if (!is.null(env$bst)) {
xgb.parameters(env$bst$handle) <- pars
} else {
for (fd in env$bst_folds)
xgb.parameters(fd$bst) <- pars
}
}
attr(callback, 'is_pre_iteration') <- TRUE
attr(callback, 'call') <- match.call()
attr(callback, 'name') <- 'cb.reset.parameters'
callback
}
#' Callback closure to activate the early stopping.
#'
#' @param stopping_rounds The number of rounds with no improvement in
#' the evaluation metric in order to stop the training.
#' @param maximize whether to maximize the evaluation metric
#' @param metric_name the name of an evaluation column to use as a criteria for early
#' stopping. If not set, the last column would be used.
#' Let's say the test data in \code{watchlist} was labelled as \code{dtest},
#' and one wants to use the AUC in test data for early stopping regardless of where
#' it is in the \code{watchlist}, then one of the following would need to be set:
#' \code{metric_name='dtest-auc'} or \code{metric_name='dtest_auc'}.
#' All dash '-' characters in metric names are considered equivalent to '_'.
#' @param verbose whether to print the early stopping information.
#'
#' @details
#' This callback function determines the condition for early stopping
#' by setting the \code{stop_condition = TRUE} flag in its calling frame.
#'
#' The following additional fields are assigned to the model's R object:
#' \itemize{
#' \item \code{best_score} the evaluation score at the best iteration
#' \item \code{best_iteration} at which boosting iteration the best score has occurred (1-based index)
#' }
#' The Same values are also stored as xgb-attributes:
#' \itemize{
#' \item \code{best_iteration} is stored as a 0-based iteration index (for interoperability of binary models)
#' \item \code{best_msg} message string is also stored.
#' }
#'
#' At least one data element is required in the evaluation watchlist for early stopping to work.
#'
#' Callback function expects the following values to be set in its calling frame:
#' \code{stop_condition},
#' \code{bst_evaluation},
#' \code{rank},
#' \code{bst} (or \code{bst_folds} and \code{basket}),
#' \code{iteration},
#' \code{begin_iteration},
#' \code{end_iteration},
#' \code{num_parallel_tree}.
#'
#' @seealso
#' \code{\link{callbacks}},
#' \code{\link{xgb.attr}}
#'
#' @export
cb.early.stop <- function(stopping_rounds, maximize = FALSE,
metric_name = NULL, verbose = TRUE) {
# state variables
best_iteration <- -1
best_ntreelimit <- -1
best_score <- Inf
best_msg <- NULL
metric_idx <- 1
init <- function(env) {
if (length(env$bst_evaluation) == 0)
stop("For early stopping, watchlist must have at least one element")
eval_names <- gsub('-', '_', names(env$bst_evaluation))
if (!is.null(metric_name)) {
metric_idx <<- which(gsub('-', '_', metric_name) == eval_names)
if (length(metric_idx) == 0)
stop("'metric_name' for early stopping is not one of the following:\n",
paste(eval_names, collapse = ' '), '\n')
}
if (is.null(metric_name) &&
length(env$bst_evaluation) > 1) {
metric_idx <<- length(eval_names)
if (verbose)
cat('Multiple eval metrics are present. Will use ',
eval_names[metric_idx], ' for early stopping.\n', sep = '')
}
metric_name <<- eval_names[metric_idx]
# maximize is usually NULL when not set in xgb.train and built-in metrics
if (is.null(maximize))
maximize <<- grepl('(_auc|_map|_ndcg)', metric_name)
if (verbose && NVL(env$rank, 0) == 0)
cat("Will train until ", metric_name, " hasn't improved in ",
stopping_rounds, " rounds.\n\n", sep = '')
best_iteration <<- 1
if (maximize) best_score <<- -Inf
env$stop_condition <- FALSE
if (!is.null(env$bst)) {
if (!inherits(env$bst, 'xgb.Booster'))
stop("'bst' in the parent frame must be an 'xgb.Booster'")
if (!is.null(best_score <- xgb.attr(env$bst$handle, 'best_score'))) {
best_score <<- as.numeric(best_score)
best_iteration <<- as.numeric(xgb.attr(env$bst$handle, 'best_iteration')) + 1
best_msg <<- as.numeric(xgb.attr(env$bst$handle, 'best_msg'))
} else {
xgb.attributes(env$bst$handle) <- list(best_iteration = best_iteration - 1,
best_score = best_score)
}
} else if (is.null(env$bst_folds) || is.null(env$basket)) {
stop("Parent frame has neither 'bst' nor ('bst_folds' and 'basket')")
}
}
finalizer <- function(env) {
if (!is.null(env$bst)) {
attr_best_score <- as.numeric(xgb.attr(env$bst$handle, 'best_score'))
if (best_score != attr_best_score) {
# If the difference is too big, throw an error
if (abs(best_score - attr_best_score) >= 1e-14) {
stop("Inconsistent 'best_score' values between the closure state: ", best_score,
" and the xgb.attr: ", attr_best_score)
}
# If the difference is due to floating-point truncation, update best_score
best_score <- attr_best_score
}
env$bst$best_iteration <- best_iteration
env$bst$best_ntreelimit <- best_ntreelimit
env$bst$best_score <- best_score
} else {
env$basket$best_iteration <- best_iteration
env$basket$best_ntreelimit <- best_ntreelimit
}
}
callback <- function(env = parent.frame(), finalize = FALSE) {
if (best_iteration < 0)
init(env)
if (finalize)
return(finalizer(env))
i <- env$iteration
score <- env$bst_evaluation[metric_idx]
if ((maximize && score > best_score) ||
(!maximize && score < best_score)) {
best_msg <<- format.eval.string(i, env$bst_evaluation, env$bst_evaluation_err)
best_score <<- score
best_iteration <<- i
best_ntreelimit <<- best_iteration * env$num_parallel_tree
# save the property to attributes, so they will occur in checkpoint
if (!is.null(env$bst)) {
xgb.attributes(env$bst) <- list(
best_iteration = best_iteration - 1, # convert to 0-based index
best_score = best_score,
best_msg = best_msg,
best_ntreelimit = best_ntreelimit)
}
} else if (i - best_iteration >= stopping_rounds) {
env$stop_condition <- TRUE
env$end_iteration <- i
if (verbose && NVL(env$rank, 0) == 0)
cat("Stopping. Best iteration:\n", best_msg, "\n\n", sep = '')
}
}
attr(callback, 'call') <- match.call()
attr(callback, 'name') <- 'cb.early.stop'
callback
}
#' Callback closure for saving a model file.
#'
#' @param save_period save the model to disk after every
#' \code{save_period} iterations; 0 means save the model at the end.
#' @param save_name the name or path for the saved model file.
#' It can contain a \code{\link[base]{sprintf}} formatting specifier
#' to include the integer iteration number in the file name.
#' E.g., with \code{save_name} = 'xgboost_%04d.model',
#' the file saved at iteration 50 would be named "xgboost_0050.model".
#'
#' @details
#' This callback function allows to save an xgb-model file, either periodically after each \code{save_period}'s or at the end.
#'
#' Callback function expects the following values to be set in its calling frame:
#' \code{bst},
#' \code{iteration},
#' \code{begin_iteration},
#' \code{end_iteration}.
#'
#' @seealso
#' \code{\link{callbacks}}
#'
#' @export
cb.save.model <- function(save_period = 0, save_name = "xgboost.model") {
if (save_period < 0)
stop("'save_period' cannot be negative")
callback <- function(env = parent.frame()) {
if (is.null(env$bst))
stop("'save_model' callback requires the 'bst' booster object in its calling frame")
if ((save_period > 0 && (env$iteration - env$begin_iteration) %% save_period == 0) ||
(save_period == 0 && env$iteration == env$end_iteration))
xgb.save(env$bst, sprintf(save_name, env$iteration))
}
attr(callback, 'call') <- match.call()
attr(callback, 'name') <- 'cb.save.model'
callback
}
#' Callback closure for returning cross-validation based predictions.
#'
#' @param save_models a flag for whether to save the folds' models.
#'
#' @details
#' This callback function saves predictions for all of the test folds,
#' and also allows to save the folds' models.
#'
#' It is a "finalizer" callback and it uses early stopping information whenever it is available,
#' thus it must be run after the early stopping callback if the early stopping is used.
#'
#' Callback function expects the following values to be set in its calling frame:
#' \code{bst_folds},
#' \code{basket},
#' \code{data},
#' \code{end_iteration},
#' \code{params},
#' \code{num_parallel_tree},
#' \code{num_class}.
#'
#' @return
#' Predictions are returned inside of the \code{pred} element, which is either a vector or a matrix,
#' depending on the number of prediction outputs per data row. The order of predictions corresponds
#' to the order of rows in the original dataset. Note that when a custom \code{folds} list is
#' provided in \code{xgb.cv}, the predictions would only be returned properly when this list is a
#' non-overlapping list of k sets of indices, as in a standard k-fold CV. The predictions would not be
#' meaningful when user-provided folds have overlapping indices as in, e.g., random sampling splits.
#' When some of the indices in the training dataset are not included into user-provided \code{folds},
#' their prediction value would be \code{NA}.
#'
#' @seealso
#' \code{\link{callbacks}}
#'
#' @export
cb.cv.predict <- function(save_models = FALSE) {
finalizer <- function(env) {
if (is.null(env$basket) || is.null(env$bst_folds))
stop("'cb.cv.predict' callback requires 'basket' and 'bst_folds' lists in its calling frame")
N <- nrow(env$data)
pred <-
if (env$num_class > 1) {
matrix(NA_real_, N, env$num_class)
} else {
rep(NA_real_, N)
}
iterationrange <- c(1, NVL(env$basket$best_iteration, env$end_iteration) + 1)
if (NVL(env$params[['booster']], '') == 'gblinear') {
iterationrange <- c(1, 1) # must be 0 for gblinear
}
for (fd in env$bst_folds) {
pr <- predict(fd$bst, fd$watchlist[[2]], iterationrange = iterationrange, reshape = TRUE)
if (is.matrix(pred)) {
pred[fd$index, ] <- pr
} else {
pred[fd$index] <- pr
}
}
env$basket$pred <- pred
if (save_models) {
env$basket$models <- lapply(env$bst_folds, function(fd) {
xgb.attr(fd$bst, 'niter') <- env$end_iteration - 1
xgb.Booster.complete(xgb.handleToBooster(fd$bst), saveraw = TRUE)
})
}
}
callback <- function(env = parent.frame(), finalize = FALSE) {
if (finalize)
return(finalizer(env))
}
attr(callback, 'call') <- match.call()
attr(callback, 'name') <- 'cb.cv.predict'
callback
}
#' Callback closure for collecting the model coefficients history of a gblinear booster
#' during its training.
#'
#' @param sparse when set to FALSE/TRUE, a dense/sparse matrix is used to store the result.
#' Sparse format is useful when one expects only a subset of coefficients to be non-zero,
#' when using the "thrifty" feature selector with fairly small number of top features
#' selected per iteration.
#'
#' @details
#' To keep things fast and simple, gblinear booster does not internally store the history of linear
#' model coefficients at each boosting iteration. This callback provides a workaround for storing
#' the coefficients' path, by extracting them after each training iteration.
#'
#' Callback function expects the following values to be set in its calling frame:
#' \code{bst} (or \code{bst_folds}).
#'
#' @return
#' Results are stored in the \code{coefs} element of the closure.
#' The \code{\link{xgb.gblinear.history}} convenience function provides an easy
#' way to access it.
#' With \code{xgb.train}, it is either a dense of a sparse matrix.
#' While with \code{xgb.cv}, it is a list (an element per each fold) of such
#' matrices.
#'
#' @seealso
#' \code{\link{callbacks}}, \code{\link{xgb.gblinear.history}}.
#'
#' @examples
#' #### Binary classification:
#' #
#' # In the iris dataset, it is hard to linearly separate Versicolor class from the rest
#' # without considering the 2nd order interactions:
#' x <- model.matrix(Species ~ .^2, iris)[,-1]
#' colnames(x)
#' dtrain <- xgb.DMatrix(scale(x), label = 1*(iris$Species == "versicolor"), nthread = 2)
#' param <- list(booster = "gblinear", objective = "reg:logistic", eval_metric = "auc",
#' lambda = 0.0003, alpha = 0.0003, nthread = 2)
#' # For 'shotgun', which is a default linear updater, using high eta values may result in
#' # unstable behaviour in some datasets. With this simple dataset, however, the high learning
#' # rate does not break the convergence, but allows us to illustrate the typical pattern of
#' # "stochastic explosion" behaviour of this lock-free algorithm at early boosting iterations.
#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 1.,
#' callbacks = list(cb.gblinear.history()))
#' # Extract the coefficients' path and plot them vs boosting iteration number:
#' coef_path <- xgb.gblinear.history(bst)
#' matplot(coef_path, type = 'l')
#'
#' # With the deterministic coordinate descent updater, it is safer to use higher learning rates.
#' # Will try the classical componentwise boosting which selects a single best feature per round:
#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 200, eta = 0.8,
#' updater = 'coord_descent', feature_selector = 'thrifty', top_k = 1,
#' callbacks = list(cb.gblinear.history()))
#' matplot(xgb.gblinear.history(bst), type = 'l')
#' # Componentwise boosting is known to have similar effect to Lasso regularization.
#' # Try experimenting with various values of top_k, eta, nrounds,
#' # as well as different feature_selectors.
#'
#' # For xgb.cv:
#' bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 100, eta = 0.8,
#' callbacks = list(cb.gblinear.history()))
#' # coefficients in the CV fold #3
#' matplot(xgb.gblinear.history(bst)[[3]], type = 'l')
#'
#'
#' #### Multiclass classification:
#' #
#' dtrain <- xgb.DMatrix(scale(x), label = as.numeric(iris$Species) - 1, nthread = 2)
#' param <- list(booster = "gblinear", objective = "multi:softprob", num_class = 3,
#' lambda = 0.0003, alpha = 0.0003, nthread = 2)
#' # For the default linear updater 'shotgun' it sometimes is helpful
#' # to use smaller eta to reduce instability
#' bst <- xgb.train(param, dtrain, list(tr=dtrain), nrounds = 70, eta = 0.5,
#' callbacks = list(cb.gblinear.history()))
#' # Will plot the coefficient paths separately for each class:
#' matplot(xgb.gblinear.history(bst, class_index = 0), type = 'l')
#' matplot(xgb.gblinear.history(bst, class_index = 1), type = 'l')
#' matplot(xgb.gblinear.history(bst, class_index = 2), type = 'l')
#'
#' # CV:
#' bst <- xgb.cv(param, dtrain, nfold = 5, nrounds = 70, eta = 0.5,
#' callbacks = list(cb.gblinear.history(FALSE)))
#' # 1st fold of 1st class
#' matplot(xgb.gblinear.history(bst, class_index = 0)[[1]], type = 'l')
#'
#' @export
cb.gblinear.history <- function(sparse=FALSE) {
coefs <- NULL
init <- function(env) {
if (!is.null(env$bst)) { # xgb.train:
} else if (!is.null(env$bst_folds)) { # xgb.cv:
} else stop("Parent frame has neither 'bst' nor 'bst_folds'")
}
# convert from list to (sparse) matrix
list2mat <- function(coef_list) {
if (sparse) {
coef_mat <- sparseMatrix(x = unlist(lapply(coef_list, slot, "x")),
i = unlist(lapply(coef_list, slot, "i")),
p = c(0, cumsum(sapply(coef_list, function(x) length(x@x)))),
dims = c(length(coef_list[[1]]), length(coef_list)))
return(t(coef_mat))
} else {
return(do.call(rbind, coef_list))
}
}
finalizer <- function(env) {
if (length(coefs) == 0)
return()
if (!is.null(env$bst)) { # # xgb.train:
coefs <<- list2mat(coefs)
} else { # xgb.cv:
# second lapply transposes the list
coefs <<- lapply(
X = lapply(
X = seq_along(coefs[[1]]),
FUN = function(i) lapply(coefs, "[[", i)
),
FUN = list2mat
)
}
}
extract.coef <- function(env) {
if (!is.null(env$bst)) { # # xgb.train:
cf <- as.numeric(grep('(booster|bias|weigh)', xgb.dump(env$bst), invert = TRUE, value = TRUE))
if (sparse) cf <- as(cf, "sparseVector")
} else { # xgb.cv:
cf <- vector("list", length(env$bst_folds))
for (i in seq_along(env$bst_folds)) {
dmp <- xgb.dump(xgb.handleToBooster(env$bst_folds[[i]]$bst))
cf[[i]] <- as.numeric(grep('(booster|bias|weigh)', dmp, invert = TRUE, value = TRUE))
if (sparse) cf[[i]] <- as(cf[[i]], "sparseVector")
}
}
cf
}
callback <- function(env = parent.frame(), finalize = FALSE) {
if (is.null(coefs)) init(env)
if (finalize) return(finalizer(env))
cf <- extract.coef(env)
coefs <<- c(coefs, list(cf))
}
attr(callback, 'call') <- match.call()
attr(callback, 'name') <- 'cb.gblinear.history'
callback
}
#' Extract gblinear coefficients history.
#'
#' A helper function to extract the matrix of linear coefficients' history
#' from a gblinear model created while using the \code{cb.gblinear.history()}
#' callback.
#'
#' @param model either an \code{xgb.Booster} or a result of \code{xgb.cv()}, trained
#' using the \code{cb.gblinear.history()} callback.
#' @param class_index zero-based class index to extract the coefficients for only that
#' specific class in a multinomial multiclass model. When it is NULL, all the
#' coefficients are returned. Has no effect in non-multiclass models.
#'
#' @return
#' For an \code{xgb.train} result, a matrix (either dense or sparse) with the columns
#' corresponding to iteration's coefficients (in the order as \code{xgb.dump()} would
#' return) and the rows corresponding to boosting iterations.
#'
#' For an \code{xgb.cv} result, a list of such matrices is returned with the elements
#' corresponding to CV folds.
#'
#' @export
xgb.gblinear.history <- function(model, class_index = NULL) {
if (!(inherits(model, "xgb.Booster") ||
inherits(model, "xgb.cv.synchronous")))
stop("model must be an object of either xgb.Booster or xgb.cv.synchronous class")
is_cv <- inherits(model, "xgb.cv.synchronous")
if (is.null(model[["callbacks"]]) || is.null(model$callbacks[["cb.gblinear.history"]]))
stop("model must be trained while using the cb.gblinear.history() callback")
if (!is_cv) {
# extract num_class & num_feat from the internal model
dmp <- xgb.dump(model)
if (length(dmp) < 2 || dmp[2] != "bias:")
stop("It does not appear to be a gblinear model")
dmp <- dmp[-c(1, 2)]
n <- which(dmp == 'weight:')
if (length(n) != 1)
stop("It does not appear to be a gblinear model")
num_class <- n - 1
num_feat <- (length(dmp) - 4) / num_class
} else {
# in case of CV, the object is expected to have this info
if (model$params$booster != "gblinear")
stop("It does not appear to be a gblinear model")
num_class <- NVL(model$params$num_class, 1)
num_feat <- model$nfeatures
if (is.null(num_feat))
stop("This xgb.cv result does not have nfeatures info")
}
if (!is.null(class_index) &&
num_class > 1 &&
(class_index[1] < 0 || class_index[1] >= num_class))
stop("class_index has to be within [0,", num_class - 1, "]")
coef_path <- environment(model$callbacks$cb.gblinear.history)[["coefs"]]
if (!is.null(class_index) && num_class > 1) {
coef_path <- if (is.list(coef_path)) {
lapply(coef_path,
function(x) x[, seq(1 + class_index, by = num_class, length.out = num_feat)])
} else {
coef_path <- coef_path[, seq(1 + class_index, by = num_class, length.out = num_feat)]
}
}
coef_path
}
#
# Internal utility functions for callbacks ------------------------------------
#
# Format the evaluation metric string
format.eval.string <- function(iter, eval_res, eval_err = NULL) {
if (length(eval_res) == 0)
stop('no evaluation results')
enames <- names(eval_res)
if (is.null(enames))
stop('evaluation results must have names')
iter <- sprintf('[%d]\t', iter)
if (!is.null(eval_err)) {
if (length(eval_res) != length(eval_err))
stop('eval_res & eval_err lengths mismatch')
res <- paste0(sprintf("%s:%f+%f", enames, eval_res, eval_err), collapse = '\t')
} else {
res <- paste0(sprintf("%s:%f", enames, eval_res), collapse = '\t')
}
return(paste0(iter, res))
}
# Extract callback names from the list of callbacks
callback.names <- function(cb_list) {
unlist(lapply(cb_list, function(x) attr(x, 'name')))
}
# Extract callback calls from the list of callbacks
callback.calls <- function(cb_list) {
unlist(lapply(cb_list, function(x) attr(x, 'call')))
}
# Add a callback cb to the list and make sure that
# cb.early.stop and cb.cv.predict are at the end of the list
# with cb.cv.predict being the last (when present)
add.cb <- function(cb_list, cb) {
cb_list <- c(cb_list, cb)
names(cb_list) <- callback.names(cb_list)
if ('cb.early.stop' %in% names(cb_list)) {
cb_list <- c(cb_list, cb_list['cb.early.stop'])
# this removes only the first one
cb_list['cb.early.stop'] <- NULL
}
if ('cb.cv.predict' %in% names(cb_list)) {
cb_list <- c(cb_list, cb_list['cb.cv.predict'])
cb_list['cb.cv.predict'] <- NULL
}
cb_list
}
# Sort callbacks list into categories
categorize.callbacks <- function(cb_list) {
list(
pre_iter = Filter(function(x) {
pre <- attr(x, 'is_pre_iteration')
!is.null(pre) && pre
}, cb_list),
post_iter = Filter(function(x) {
pre <- attr(x, 'is_pre_iteration')
is.null(pre) || !pre
}, cb_list),
finalize = Filter(function(x) {
'finalize' %in% names(formals(x))
}, cb_list)
)
}
# Check whether all callback functions with names given by 'query_names' are present in the 'cb_list'.
has.callbacks <- function(cb_list, query_names) {
if (length(cb_list) < length(query_names))
return(FALSE)
if (!is.list(cb_list) ||
any(sapply(cb_list, class) != 'function')) {
stop('`cb_list` must be a list of callback functions')
}
cb_names <- callback.names(cb_list)
if (!is.character(cb_names) ||
length(cb_names) != length(cb_list) ||
any(cb_names == "")) {
stop('All callbacks in the `cb_list` must have a non-empty `name` attribute')
}
if (!is.character(query_names) ||
length(query_names) == 0 ||
any(query_names == "")) {
stop('query_names must be a non-empty vector of non-empty character names')
}
return(all(query_names %in% cb_names))
}