Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixes for numpy 2.0. #10252

Merged
merged 1 commit into from
May 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion demo/guide-python/external_memory.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def main(tmpdir: str) -> xgboost.Booster:
it = Iterator(files)
# For non-data arguments, specify it here once instead of passing them by the `next`
# method.
missing = np.NaN
missing = np.nan
Xy = xgboost.DMatrix(it, missing=missing, enable_categorical=False)

# ``approx`` is also supported, but less efficient due to sketching. GPU behaves
Expand Down
8 changes: 4 additions & 4 deletions python-package/xgboost/data.py
Original file line number Diff line number Diff line change
Expand Up @@ -233,9 +233,9 @@ def _maybe_np_slice(data: DataType, dtype: Optional[NumpyDType]) -> np.ndarray:
if not data.flags.c_contiguous:
data = np.array(data, copy=True, dtype=dtype)
else:
data = np.array(data, copy=False, dtype=dtype)
data = np.asarray(data, dtype=dtype)
except AttributeError:
data = np.array(data, copy=False, dtype=dtype)
data = np.asarray(data, dtype=dtype)
data, dtype = _ensure_np_dtype(data, dtype)
return data

Expand Down Expand Up @@ -483,7 +483,7 @@ def cat_codes(ser: pd.Series) -> np.ndarray:
if is_pd_cat_dtype(ser.dtype):
return _ensure_np_dtype(
ser.cat.codes.astype(np.float32)
.replace(-1.0, np.NaN)
.replace(-1.0, np.nan)
.to_numpy(na_value=np.nan),
np.float32,
)[0]
Expand All @@ -495,7 +495,7 @@ def cat_codes(ser: pd.Series) -> np.ndarray:
.combine_chunks()
.dictionary_encode()
.indices.astype(np.float32)
.replace(-1.0, np.NaN)
.replace(-1.0, np.nan)
)

def nu_type(ser: pd.Series) -> np.ndarray:
Expand Down
2 changes: 1 addition & 1 deletion python-package/xgboost/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -437,7 +437,7 @@ def make_categorical(
index = rng.randint(
low=0, high=n_samples - 1, size=int(n_samples * sparsity)
)
df.iloc[index, i] = np.NaN
df.iloc[index, i] = np.nan
if is_categorical_dtype(df.dtypes[i]):
assert n_categories == np.unique(df.dtypes[i].categories).size

Expand Down
2 changes: 1 addition & 1 deletion python-package/xgboost/testing/dask.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def check_uneven_nan(client: Client, tree_method: str, n_workers: int) -> None:
X = pd.DataFrame({"a": range(10000), "b": range(10000, 0, -1)})
y = pd.Series([*[0] * 5000, *[1] * 5000])

X["a"][:3000:1000] = np.NaN
X["a"][:3000:1000] = np.nan

client.wait_for_workers(n_workers=n_workers)

Expand Down
10 changes: 5 additions & 5 deletions tests/python-gpu/test_from_cudf.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@
cudf = pytest.importorskip("cudf")


def dmatrix_from_cudf(input_type, DMatrixT, missing=np.NAN):
def dmatrix_from_cudf(input_type, DMatrixT, missing=np.nan):
"""Test constructing DMatrix from cudf"""
import pandas as pd

Expand Down Expand Up @@ -38,8 +38,8 @@ def dmatrix_from_cudf(input_type, DMatrixT, missing=np.NAN):

def _test_from_cudf(DMatrixT):
"""Test constructing DMatrix from cudf"""
dmatrix_from_cudf(np.float32, DMatrixT, np.NAN)
dmatrix_from_cudf(np.float64, DMatrixT, np.NAN)
dmatrix_from_cudf(np.float32, DMatrixT, np.nan)
dmatrix_from_cudf(np.float64, DMatrixT, np.nan)

dmatrix_from_cudf(np.int8, DMatrixT, 2)
dmatrix_from_cudf(np.int32, DMatrixT, -2)
Expand All @@ -66,7 +66,7 @@ def _test_from_cudf(DMatrixT):
)

# Test when number of elements is less than 8
X = cudf.DataFrame({"x": cudf.Series([0, 1, 2, np.NAN, 4], dtype=np.int32)})
X = cudf.DataFrame({"x": cudf.Series([0, 1, 2, np.nan, 4], dtype=np.int32)})
dtrain = DMatrixT(X)
assert dtrain.num_col() == 1
assert dtrain.num_row() == 5
Expand Down Expand Up @@ -225,7 +225,7 @@ def test_cudf_categorical(self) -> None:
assert len(interfaces) == X.shape[1]

# test missing value
X = cudf.DataFrame({"f0": ["a", "b", np.NaN]})
X = cudf.DataFrame({"f0": ["a", "b", np.nan]})
X["f0"] = X["f0"].astype("category")
df, cat_codes, _, _ = xgb.data._transform_cudf_df(
X, None, None, enable_categorical=True
Expand Down
8 changes: 4 additions & 4 deletions tests/python-gpu/test_from_cupy.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def test_array_interface() -> None:
np.testing.assert_equal(cp.asnumpy(arr), cp.asnumpy(ret))


def dmatrix_from_cupy(input_type, DMatrixT, missing=np.NAN):
def dmatrix_from_cupy(input_type, DMatrixT, missing=np.nan):
"""Test constructing DMatrix from cupy"""
kRows = 80
kCols = 3
Expand Down Expand Up @@ -46,9 +46,9 @@ def dmatrix_from_cupy(input_type, DMatrixT, missing=np.NAN):

def _test_from_cupy(DMatrixT):
"""Test constructing DMatrix from cupy"""
dmatrix_from_cupy(np.float16, DMatrixT, np.NAN)
dmatrix_from_cupy(np.float32, DMatrixT, np.NAN)
dmatrix_from_cupy(np.float64, DMatrixT, np.NAN)
dmatrix_from_cupy(np.float16, DMatrixT, np.nan)
dmatrix_from_cupy(np.float32, DMatrixT, np.nan)
dmatrix_from_cupy(np.float64, DMatrixT, np.nan)

dmatrix_from_cupy(np.uint8, DMatrixT, 2)
dmatrix_from_cupy(np.uint32, DMatrixT, 3)
Expand Down
17 changes: 9 additions & 8 deletions tests/python/test_dmatrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,7 +147,7 @@ def test_feature_names_slice(self):
assert dm.slice([0, 1]).num_col() == dm.num_col()
assert dm.slice([0, 1]).feature_names == dm.feature_names

with pytest.raises(ValueError, match=r"Duplicates found: \['bar'\]"):
with pytest.raises(ValueError, match=r"Duplicates found: \[.*'bar'.*\]"):
dm.feature_names = ["bar"] * (data.shape[1] - 2) + ["a", "b"]

dm.feature_types = list("qiqiq")
Expand Down Expand Up @@ -264,7 +264,7 @@ def test_sparse_dmatrix_csr(self):
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
watchlist = [(dtrain, "train")]
param = {"max_depth": 3, "objective": "binary:logistic"}
bst = xgb.train(param, dtrain, 5, watchlist)
bst = xgb.train(param, dtrain, 5, evals=watchlist)
bst.predict(dtrain)

i32 = csr_matrix((x.data.astype(np.int32), x.indices, x.indptr), shape=x.shape)
Expand Down Expand Up @@ -302,7 +302,7 @@ def test_sparse_dmatrix_csc(self):
assert (dtrain.num_row(), dtrain.num_col()) == (nrow, ncol)
watchlist = [(dtrain, "train")]
param = {"max_depth": 3, "objective": "binary:logistic"}
bst = xgb.train(param, dtrain, 5, watchlist)
bst = xgb.train(param, dtrain, 5, evals=watchlist)
bst.predict(dtrain)

def test_unknown_data(self):
Expand All @@ -320,9 +320,10 @@ class Data:
X = rng.rand(10, 10)
y = rng.rand(10)
X = sparse.dok_matrix(X)
Xy = xgb.DMatrix(X, y)
assert Xy.num_row() == 10
assert Xy.num_col() == 10
with pytest.warns(UserWarning, match="dok_matrix"):
Xy = xgb.DMatrix(X, y)
assert Xy.num_row() == 10
assert Xy.num_col() == 10

@pytest.mark.skipif(**tm.no_pandas())
def test_np_categorical(self):
Expand All @@ -343,8 +344,8 @@ def test_scipy_categorical(self):
X = X.values.astype(np.float32)
feature_types = ["c"] * n_features

X[1, 3] = np.NAN
X[2, 4] = np.NAN
X[1, 3] = np.nan
X[2, 4] = np.nan
X = sparse.csr_matrix(X)

Xy = xgb.DMatrix(X, y, feature_types=feature_types)
Expand Down
2 changes: 1 addition & 1 deletion tests/python/test_predict.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@ def test_dtypes(self) -> None:

# unsupported types
for dtype in [
np.string_,
np.bytes_,
np.complex64,
np.complex128,
]:
Expand Down
2 changes: 1 addition & 1 deletion tests/python/test_quantile_dmatrix.py
Original file line number Diff line number Diff line change
Expand Up @@ -333,7 +333,7 @@ def test_dtypes(self) -> None:

# unsupported types
for dtype in [
np.string_,
np.bytes_,
np.complex64,
np.complex128,
]:
Expand Down
2 changes: 1 addition & 1 deletion tests/python/test_with_pandas.py
Original file line number Diff line number Diff line change
Expand Up @@ -248,7 +248,7 @@ def test_pandas_categorical(self, data_split_mode=DataSplitMode.ROW):
assert transformed.columns[0].min() == 0

# test missing value
X = pd.DataFrame({"f0": ["a", "b", np.NaN]})
X = pd.DataFrame({"f0": ["a", "b", np.nan]})
X["f0"] = X["f0"].astype("category")
arr, _, _ = xgb.data._transform_pandas_df(X, enable_categorical=True)
for c in arr.columns:
Expand Down
2 changes: 1 addition & 1 deletion tests/python/test_with_sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -1098,7 +1098,7 @@ def test_pandas_input():
np.testing.assert_equal(model.feature_names_in_, np.array(feature_names))

columns = list(train.columns)
random.shuffle(columns, lambda: 0.1)
random.shuffle(columns)
df_incorrect = df[columns]
with pytest.raises(ValueError):
model.predict(df_incorrect)
Expand Down
12 changes: 6 additions & 6 deletions tests/test_distributed/test_with_spark/test_spark_local.py
Original file line number Diff line number Diff line change
Expand Up @@ -1653,9 +1653,9 @@ def ltr_data(spark: SparkSession) -> Generator[LTRData, None, None]:
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[9.0, 4.0, 8.0],
[np.NaN, 1.0, 5.5],
[np.NaN, 6.0, 7.5],
[np.NaN, 8.0, 9.5],
[np.nan, 1.0, 5.5],
[np.nan, 6.0, 7.5],
[np.nan, 8.0, 9.5],
]
)
qid_train = np.array([0, 0, 0, 1, 1, 1])
Expand All @@ -1666,9 +1666,9 @@ def ltr_data(spark: SparkSession) -> Generator[LTRData, None, None]:
[1.5, 2.0, 3.0],
[4.5, 5.0, 6.0],
[9.0, 4.5, 8.0],
[np.NaN, 1.0, 6.0],
[np.NaN, 6.0, 7.0],
[np.NaN, 8.0, 10.5],
[np.nan, 1.0, 6.0],
[np.nan, 6.0, 7.0],
[np.nan, 8.0, 10.5],
]
)

Expand Down
Loading