forked from root-project/root
-
Notifications
You must be signed in to change notification settings - Fork 0
/
TEveVector.h
456 lines (370 loc) · 14.6 KB
/
TEveVector.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
// @(#)root/eve:$Id$
// Author: Matevz Tadel 2007
/*************************************************************************
* Copyright (C) 1995-2007, Rene Brun and Fons Rademakers. *
* All rights reserved. *
* *
* For the licensing terms see $ROOTSYS/LICENSE. *
* For the list of contributors see $ROOTSYS/README/CREDITS. *
*************************************************************************/
#ifndef ROOT_TEveVector
#define ROOT_TEveVector
#include "Rtypes.h"
#include "TMath.h"
#include <cstddef>
class TVector3;
//==============================================================================
// TEveVectorT
//==============================================================================
template <typename TT>
class TEveVectorT
{
public:
TT fX, fY, fZ; // Components of the vector.
TEveVectorT() : fX(0), fY(0), fZ(0) {}
template <typename OO>
TEveVectorT(const TEveVectorT<OO>& v) : fX(v.fX), fY(v.fY), fZ(v.fZ) {}
TEveVectorT(const Float_t* v) : fX(v[0]), fY(v[1]), fZ(v[2]) {}
TEveVectorT(const Double_t* v) : fX(v[0]), fY(v[1]), fZ(v[2]) {}
TEveVectorT(TT x, TT y, TT z) : fX(x), fY(y), fZ(z) {}
void Dump() const;
#ifdef R__WIN32
// This fixes the following rootcling error when generating the dictionary:
// error G34C21FBE: static_assert expression is not an integral constant expression
// FIXME: check if the error is fixed when upgrading llvm/clang
const TT *Arr() const
{
if (offsetof(TEveVectorT, fZ) != offsetof(TEveVectorT, fX) + 2 * sizeof(TT))
Error("TEveVectorT", "Subsequent nembers cannot be accessed as array!");
return &fX;
}
TT *Arr()
{
if (offsetof(TEveVectorT, fZ) != offsetof(TEveVectorT, fX) + 2 * sizeof(TT))
Error("TEveVectorT", "Subsequent nembers cannot be accessed as array!");
return &fX;
}
#else
const TT *Arr() const
{
static_assert(offsetof(TEveVectorT, fZ) == offsetof(TEveVectorT, fX) + 2 * sizeof(TT),
"Subsequent nembers cannot be accessed as array!");
return &fX;
}
TT *Arr()
{
static_assert(offsetof(TEveVectorT, fZ) == offsetof(TEveVectorT, fX) + 2 * sizeof(TT),
"Subsequent nembers cannot be accessed as array!");
return &fX;
}
#endif
operator const TT*() const { return Arr(); }
operator TT*() { return Arr(); }
TT operator [] (Int_t idx) const { return Arr()[idx]; }
TT& operator [] (Int_t idx) { return Arr()[idx]; }
TEveVectorT& operator*=(TT s) { fX *= s; fY *= s; fZ *= s; return *this; }
TEveVectorT& operator+=(const TEveVectorT& v) { fX += v.fX; fY += v.fY; fZ += v.fZ; return *this; }
TEveVectorT& operator-=(const TEveVectorT& v) { fX -= v.fX; fY -= v.fY; fZ -= v.fZ; return *this; }
void Set(const Float_t* v) { fX = v[0]; fY = v[1]; fZ = v[2]; }
void Set(const Double_t* v) { fX = v[0]; fY = v[1]; fZ = v[2]; }
void Set(TT x, TT y, TT z) { fX = x; fY = y; fZ = z; }
void Set(const TVector3& v);
template <typename OO>
void Set(const TEveVectorT<OO>& v) { fX = v.fX; fY = v.fY; fZ = v.fZ; }
void NegateXYZ() { fX = - fX; fY = -fY; fZ = -fZ; }
TT Normalize(TT length=1);
TT Phi() const;
TT Theta() const;
TT CosTheta() const;
TT Eta() const;
TT Mag2() const { return fX*fX + fY*fY + fZ*fZ; }
TT Mag() const { return TMath::Sqrt(Mag2()); }
TT Perp2() const { return fX*fX + fY*fY; }
TT Perp() const { return TMath::Sqrt(Perp2()); }
TT R() const { return Perp(); }
TT Distance(const TEveVectorT& v) const;
TT SquareDistance(const TEveVectorT& v) const;
TT Dot(const TEveVectorT& a) const;
TEveVectorT Cross(const TEveVectorT& a) const;
TEveVectorT& Sub(const TEveVectorT& a, const TEveVectorT& b);
TEveVectorT& Mult(const TEveVectorT& a, TT af);
TEveVectorT Orthogonal() const;
void OrthoNormBase(TEveVectorT& a, TEveVectorT& b) const;
Bool_t IsZero() const { return fX == 0 && fY == 0 && fZ == 0; }
ClassDefNV(TEveVectorT, 2); // A three-vector template without TObject inheritance and virtual functions.
};
typedef TEveVectorT<Float_t> TEveVector;
typedef TEveVectorT<Float_t> TEveVectorF;
typedef TEveVectorT<Double_t> TEveVectorD;
//______________________________________________________________________________
template<typename TT>
inline TT TEveVectorT<TT>::Phi() const
{
return fX == 0 && fY == 0 ? 0 : TMath::ATan2(fY, fX);
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVectorT<TT>::Theta() const
{
return fX == 0 && fY == 0 && fZ == 0 ? 0 : TMath::ATan2(Perp(), fZ);
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVectorT<TT>::CosTheta() const
{
Float_t ptot = Mag(); return ptot == 0 ? 1 : fZ/ptot;
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVectorT<TT>::Distance(const TEveVectorT& b) const
{
return TMath::Sqrt((fX - b.fX)*(fX - b.fX) +
(fY - b.fY)*(fY - b.fY) +
(fZ - b.fZ)*(fZ - b.fZ));
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVectorT<TT>::SquareDistance(const TEveVectorT& b) const
{
return ((fX - b.fX) * (fX - b.fX) +
(fY - b.fY) * (fY - b.fY) +
(fZ - b.fZ) * (fZ - b.fZ));
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVectorT<TT>::Dot(const TEveVectorT& a) const
{
return a.fX*fX + a.fY*fY + a.fZ*fZ;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVectorT<TT> TEveVectorT<TT>::Cross(const TEveVectorT<TT>& a) const
{
TEveVectorT<TT> r;
r.fX = fY * a.fZ - fZ * a.fY;
r.fY = fZ * a.fX - fX * a.fZ;
r.fZ = fX * a.fY - fY * a.fX;
return r;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVectorT<TT>& TEveVectorT<TT>::Sub(const TEveVectorT<TT>& a, const TEveVectorT<TT>& b)
{
fX = a.fX - b.fX;
fY = a.fY - b.fY;
fZ = a.fZ - b.fZ;
return *this;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVectorT<TT>& TEveVectorT<TT>::Mult(const TEveVectorT<TT>& a, TT af)
{
fX = a.fX * af;
fY = a.fY * af;
fZ = a.fZ * af;
return *this;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVectorT<TT> operator+(const TEveVectorT<TT>& a, const TEveVectorT<TT>& b)
{
TEveVectorT<TT> r(a);
return r += b;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVectorT<TT> operator-(const TEveVectorT<TT>& a, const TEveVectorT<TT>& b)
{
TEveVectorT<TT> r(a);
return r -= b;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVectorT<TT> operator*(const TEveVectorT<TT>& a, TT b)
{
TEveVectorT<TT> r(a);
return r *= b;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVectorT<TT> operator*(TT b, const TEveVectorT<TT>& a)
{
TEveVectorT<TT> r(a);
return r *= b;
}
//==============================================================================
// TEveVector4T
//==============================================================================
template <typename TT>
class TEveVector4T : public TEveVectorT<TT>
{
typedef TEveVectorT<TT> TP;
public:
TT fT;
TEveVector4T() : TP(), fT(0) {}
template <typename OO>
TEveVector4T(const TEveVectorT<OO>& v) : TP(v.fX, v.fY, v.fZ), fT(0) {}
template <typename OO>
TEveVector4T(const TEveVectorT<OO>& v, Float_t t) : TP(v.fX, v.fY, v.fZ), fT(t) {}
template <typename OO>
TEveVector4T(const TEveVector4T<OO>& v) : TP(v.fX, v.fY, v.fZ), fT(v.fT) {}
TEveVector4T(const Float_t* v) : TP(v), fT(v[3]) {}
TEveVector4T(const Double_t* v) : TP(v), fT(v[3]) {}
TEveVector4T(TT x, TT y, TT z, TT t=0) : TP(x, y, z), fT(t) {}
void Dump() const;
TEveVector4T& operator*=(TT s) { TP::operator*=(s); fT *= s; return *this; }
TEveVector4T& operator+=(const TEveVector4T& v) { TP::operator+=(v); fT += v.fT; return *this; }
TEveVector4T& operator-=(const TEveVector4T& v) { TP::operator-=(v); fT -= v.fT; return *this; }
using TP::operator+=;
using TP::operator-=;
ClassDefNV(TEveVector4T, 1); // A four-vector template without TObject inheritance and virtual functions.
};
typedef TEveVector4T<Float_t> TEveVector4;
typedef TEveVector4T<Float_t> TEveVector4F;
typedef TEveVector4T<Double_t> TEveVector4D;
//______________________________________________________________________________
template<typename TT>
inline TEveVector4T<TT> operator+(const TEveVector4T<TT>& a, const TEveVector4T<TT>& b)
{
return TEveVector4T<TT>(a.fX + b.fX, a.fY + b.fY, a.fZ + b.fZ, a.fT + b.fT);
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector4T<TT> operator-(const TEveVector4T<TT>& a, const TEveVector4T<TT>& b)
{
return TEveVector4T<TT>(a.fX - b.fX, a.fY - b.fY, a.fZ - b.fZ, a.fT - b.fT);
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector4T<TT> operator*(const TEveVector4T<TT>& a, TT b)
{
return TEveVector4T<TT>(a.fX*b, a.fY*b, a.fZ*b, a.fT*b);
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector4T<TT> operator*(TT b, const TEveVector4T<TT>& a)
{
return TEveVector4T<TT>(a.fX*b, a.fY*b, a.fZ*b, a.fT*b);
}
//==============================================================================
// TEveVector2T
//==============================================================================
template <typename TT>
class TEveVector2T
{
public:
TT fX, fY; // Components of the point.
TEveVector2T() : fX(0), fY(0) {}
template <typename OO>
TEveVector2T(const TEveVector2T<OO>& v) : fX(v.fX), fY(v.fY) {}
TEveVector2T(const Float_t* v) : fX(v[0]), fY(v[1]) {}
TEveVector2T(const Double_t* v) : fX(v[0]), fY(v[1]) {}
TEveVector2T(TT x, TT y) : fX(x), fY(y) {}
void Dump() const;
operator const TT*() const { return &fX; }
operator TT*() { return &fX; }
TEveVector2T& operator*=(TT s) { fX *= s; fY *= s; return *this; }
TEveVector2T& operator+=(const TEveVector2T& v) { fX += v.fX; fY += v.fY; return *this; }
TEveVector2T& operator-=(const TEveVector2T& v) { fX -= v.fX; fY -= v.fY; return *this; }
TT& operator[](Int_t idx) { return (&fX)[idx]; }
TT operator[](Int_t idx) const { return (&fX)[idx]; }
const TT* Arr() const { return &fX; }
TT* Arr() { return &fX; }
void Set(const Float_t* v) { fX = v[0]; fY = v[1]; }
void Set(const Double_t* v) { fX = v[0]; fY = v[1]; }
void Set(TT x, TT y) { fX = x; fY = y; }
template <typename OO>
void Set(const TEveVector2T<OO>& v) { fX = v.fX; fY = v.fY; }
void NegateXY() { fX = - fX; fY = -fY; }
void Normalize(TT length=1);
TT Phi() const;
TT Mag2() const { return fX*fX + fY*fY;}
TT Mag() const { return TMath::Sqrt(Mag2());}
TT Distance(const TEveVector2T& v) const;
TT SquareDistance(const TEveVector2T& v) const;
TT Dot(const TEveVector2T& a) const;
TT Cross(const TEveVector2T& a) const;
TEveVector2T& Sub(const TEveVector2T& p, const TEveVector2T& q);
TEveVector2T& Mult(const TEveVector2T& a, TT af);
ClassDefNV(TEveVector2T, 1); // // A two-vector template without TObject inheritance and virtual functions.
};
typedef TEveVector2T<Float_t> TEveVector2;
typedef TEveVector2T<Float_t> TEveVector2F;
typedef TEveVector2T<Double_t> TEveVector2D;
//______________________________________________________________________________
template<typename TT>
inline TT TEveVector2T<TT>::Phi() const
{
return fX == 0.0 && fY == 0.0 ? 0.0 : TMath::ATan2(fY, fX);
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVector2T<TT>::Distance( const TEveVector2T<TT>& b) const
{
return TMath::Sqrt((fX - b.fX)*(fX - b.fX) +
(fY - b.fY)*(fY - b.fY));
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVector2T<TT>::SquareDistance(const TEveVector2T<TT>& b) const
{
return ((fX - b.fX) * (fX - b.fX) +
(fY - b.fY) * (fY - b.fY));
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVector2T<TT>::Dot(const TEveVector2T<TT>& a) const
{
return a.fX*fX + a.fY*fY;
}
//______________________________________________________________________________
template<typename TT>
inline TT TEveVector2T<TT>::Cross(const TEveVector2T<TT>& a) const
{
return fX * a.fY - fY * a.fX;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector2T<TT>& TEveVector2T<TT>::Sub(const TEveVector2T<TT>& p, const TEveVector2T<TT>& q)
{
fX = p.fX - q.fX;
fY = p.fY - q.fY;
return *this;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector2T<TT>& TEveVector2T<TT>::Mult(const TEveVector2T<TT>& a, TT af)
{
fX = a.fX * af;
fY = a.fY * af;
return *this;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector2T<TT> operator+(const TEveVector2T<TT>& a, const TEveVector2T<TT>& b)
{
TEveVector2T<TT> r(a);
return r += b;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector2T<TT> operator-(const TEveVector2T<TT>& a, const TEveVector2T<TT>& b)
{
TEveVector2T<TT> r(a);
return r -= b;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector2T<TT> operator*(const TEveVector2T<TT>& a, TT b)
{
TEveVector2T<TT> r(a);
return r *= b;
}
//______________________________________________________________________________
template<typename TT>
inline TEveVector2T<TT> operator*(TT b, const TEveVector2T<TT>& a)
{
TEveVector2T<TT> r(a);
return r *= b;
}
#endif