-
Notifications
You must be signed in to change notification settings - Fork 1
/
arrow18.mp
79 lines (67 loc) · 2.27 KB
/
arrow18.mp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
% tex/conc/mp/arrow18.mp 2011-3-21 Alan U. Kennington.
% $Id: tex/conc/mp/arrow18.mp 95af05ab07 2011-03-21 05:28:27Z Alan U. Kennington $
% Canonical multilinear map domains and ranges.
input mapmax.mp
verbatimtex \input akmath etex
beginfig(1);
pair w[];
a := 1.4cm;
b := 2.0cm;
aa := 6.5cm;
q := 0.5cm;
qq := 0.42cm;
qx := q*1.7;
qxx := q;
sep := 2pt;
vsep := 1pt;
hsep := 8pt;
lsep := 17pt;
lsepp := 11pt;
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
w0 := (0,0);
w1 := w0+(-a,b);
w2 := w0+(a,b);
% The labels for the spaces.
label(btex $\displaystyle\mtimes_{\alpha\in A}V_\alpha$ etex, w0);
% label(btex $\displaystyle\mlin((V_\alpha^*)_{\alpha\in A};K)$ etex,
% w1+(-hsep,vsep));
% label(btex $\displaystyle\smash{\botimesc_{\alpha\in A}V_\alpha}$ etex,
% w2+(hsep,0));
label(btex $\displaystyle\mlin((V_\alpha^*)_{\alpha\in A};K)$ etex,
w1+(-hsep,0));
label(btex $\displaystyle\mlin((V_\alpha)_{\alpha\in A};K)^*$ etex,
w2+(hsep,0));
label(btex $\displaystyle{}=\botimesc_{\alpha\in A}V_\alpha$ etex,
w2+(hsep+lsepp,-lsep));
% The arrows.
S_arrowspaces(w0,w1,qq*1.2,q,1,black);
S_arrowspaces(w0,w2,qq*1.2,q,1,black);
% S_arrowspaces(w1,w2,qx,qxx,1,black);
% The arrow labels.
label.lft(btex \strut$\eta^T$ etex, 0.5[w0,w1]+(-sep-2pt,0));
label.rt(btex \strut$\mu$ etex, 0.5[w0,w2]+(sep,0));
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
w10 := w0+(aa,0);
w11 := w10+(-a,b);
w12 := w10+(a,b);
% The labels for the spaces.
label(btex $\displaystyle\mtimes_{\alpha\in A}V_\alpha^*$ etex, w10);
% label(btex $\displaystyle\mlin((V_\alpha)_{\alpha\in A};K)$ etex,
% w11+(-hsep,vsep));
% label(btex $\displaystyle\smash{\botimesc_{\alpha\in A}V_\alpha^*}$ etex,
% w12+(hsep,0));
label(btex $\displaystyle\mlin((V_\alpha)_{\alpha\in A};K)$ etex,
w11+(-hsep,0));
label(btex $\displaystyle\mlin((V_\alpha^*)_{\alpha\in A};K)^*$ etex,
w12+(hsep,0));
label(btex $\displaystyle{}=\botimesc_{\alpha\in A}V_\alpha^*$ etex,
w12+(hsep+lsepp,-lsep));
% The arrows.
S_arrowspaces(w10,w11,qq*1.2,q,1,black);
S_arrowspaces(w10,w12,qq*1.2,q,1,black);
% S_arrowspaces(w11,w12,qx,qxx,1,black);
% The arrow labels.
label.lft(btex \strut$\eta$ etex, 0.5[w10,w11]+(-sep,0));
label.rt(btex \strut$\mu^*$ etex, 0.5[w10,w12]+(sep,0));
endfig;
end