-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsrfi-excerpts.scm
432 lines (373 loc) · 13.5 KB
/
srfi-excerpts.scm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
(define-syntax let-string-start+end
(syntax-rules ()
((let-string-start+end (start end) proc s-exp args-exp body ...)
(receive (start end) (string-parse-final-start+end proc s-exp args-exp)
body ...))
((let-string-start+end (start end rest) proc s-exp args-exp body ...)
(receive (rest start end) (string-parse-start+end proc s-exp args-exp)
body ...))))
;;; This one parses out a *pair* of final start/end indices.
;;; Not exported; for internal use.
(define-syntax let-string-start+end2
(syntax-rules ()
((l-s-s+e2 (start1 end1 start2 end2) proc s1 s2 args body ...)
(let ((procv proc)) ; Make sure PROC is only evaluated once.
(let-string-start+end (start1 end1 rest) procv s1 args
(let-string-start+end (start2 end2) procv s2 rest
body ...))))))
(define-syntax receive
(syntax-rules ()
((_ args expr body ...)
(call-with-values (lambda () expr) (lambda args body ...)))))
(define (string-contains super sub)
(let ((l1 (string-length super))
(l2 (string-length sub)))
(let loop ((i 0))
(cond ((> (+ i l2) l1)
#f)
((string=? (substring super i (+ i l2)) sub)
i)
(else
(loop (+ i 1)))))))
(define (string-contains-ci super sub)
(let ((l1 (string-length super))
(l2 (string-length sub)))
(let loop ((i 0))
(cond ((> (+ i l2) l1)
#f)
((string-ci=? (substring super i (+ i l2)) sub)
i)
(else
(loop (+ i 1)))))))
(define (string-prefix? s1 s2 . maybe-starts+ends)
(let-string-start+end2 (start1 end1 start2 end2)
string-prefix? s1 s2 maybe-starts+ends
(%string-prefix? s1 start1 end1 s2 start2 end2)))
(define (string-suffix? s1 s2 . maybe-starts+ends)
(let-string-start+end2 (start1 end1 start2 end2)
string-suffix? s1 s2 maybe-starts+ends
(%string-suffix? s1 start1 end1 s2 start2 end2)))
(define (%string-prefix? s1 start1 end1 s2 start2 end2)
(let ((len1 (- end1 start1)))
(and (<= len1 (- end2 start2)) ; Quick check
(= (%string-prefix-length s1 start1 end1
s2 start2 end2)
len1))))
(define (%string-suffix? s1 start1 end1 s2 start2 end2)
(let ((len1 (- end1 start1)))
(and (<= len1 (- end2 start2)) ; Quick check
(= len1 (%string-suffix-length s1 start1 end1
s2 start2 end2)))))
(define (%string-prefix-length s1 start1 end1 s2 start2 end2)
(let* ((delta (min (- end1 start1) (- end2 start2)))
(end1 (+ start1 delta)))
(if (and (eq? s1 s2) (= start1 start2)) ; EQ fast path
delta
(let lp ((i start1) (j start2)) ; Regular path
(if (or (>= i end1)
(not (char=? (string-ref s1 i)
(string-ref s2 j))))
(- i start1)
(lp (+ i 1) (+ j 1)))))))
(define (%string-suffix-length s1 start1 end1 s2 start2 end2)
(let* ((delta (min (- end1 start1) (- end2 start2)))
(start1 (- end1 delta)))
(if (and (eq? s1 s2) (= end1 end2)) ; EQ fast path
delta
(let lp ((i (- end1 1)) (j (- end2 1))) ; Regular path
(if (or (< i start1)
(not (char=? (string-ref s1 i)
(string-ref s2 j))))
(- (- end1 i) 1)
(lp (- i 1) (- j 1)))))))
(define (string-parse-final-start+end proc s args)
(receive (rest start end) (string-parse-start+end proc s args)
(if (pair? rest) (error "Extra arguments to procedure" proc rest)
(values start end))))
(define (string-parse-start+end proc s args)
(if (not (string? s)) (error "Non-string value" proc s))
(let ((slen (string-length s)))
(if (pair? args)
(let ((start (car args))
(args (cdr args)))
(if (and (integer? start) (exact? start) (>= start 0))
(receive (end args)
(if (pair? args)
(let ((end (car args))
(args (cdr args)))
(if (and (integer? end) (exact? end) (<= end slen))
(values end args)
(error "Illegal substring END spec" proc end s)))
(values slen args))
(if (<= start end) (values args start end)
(error "Illegal substring START/END spec"
proc start end s)))
(error "Illegal substring START spec" proc start s)))
(values '() 0 slen))))
(define (%string-copy! to tstart from fstart fend)
(if (> fstart tstart)
(do ((i fstart (+ i 1))
(j tstart (+ j 1)))
((>= i fend))
(string-set! to j (string-ref from i)))
(do ((i (- fend 1) (- i 1))
(j (+ -1 tstart (- fend fstart)) (- j 1)))
((< i fstart))
(string-set! to j (string-ref from i)))))
(define (string-concatenate strings)
(let* ((total (do ((strings strings (cdr strings))
(i 0 (+ i (string-length (car strings)))))
((not (pair? strings)) i)))
(ans (make-string total)))
(let lp ((i 0) (strings strings))
(if (pair? strings)
(let* ((s (car strings))
(slen (string-length s)))
(%string-copy! ans i s 0 slen)
(lp (+ i slen) (cdr strings)))))
ans))
(define (string-join strings delim)
(if (null? strings)
""
(let ((buildit (lambda (lis final)
(let recur ((lis lis))
(if (pair? lis)
(cons delim (cons (car lis) (recur (cdr lis))))
final)))))
(string-concatenate (cons (car strings) (buildit (cdr strings) '()))))))
(define (white-char? ch)
(or (char=? ch #\space)
(char=? ch #\newline)
(char=? ch #\linefeed)
(char=? ch #\return)
(char=? ch #\tab)))
(define (string-trim-both str)
(let* ((pos (let loop ((pos 0))
(if (and (< pos (string-length str))
(white-char? (string-ref str pos)))
(loop (+ 1 pos))
pos)))
(str1 (substring str pos (string-length str)))
(pos (let loop ((pos (- (string-length str1) 1)))
(if (and (>= pos 0)
(white-char? (string-ref str1 pos)))
(loop (- pos 1))
pos)))
(str2 (substring str1 0 (+ pos 1))))
str2))
(define (car+cdr pair) (values (car pair) (cdr pair)))
(define first car)
(define (null-list? l)
(cond ((pair? l) #f)
((null? l) #t)
(else (error "null-list?: argument out of domain" l))))
(define (%cars+cdrs lists)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs))))))
(values '() '()))))))
(define (%cars+cdrs+ lists cars-final)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(receive (list other-lists) (car+cdr lists)
(if (null-list? list) (abort '() '()) ; LIST is empty -- bail out
(receive (a d) (car+cdr list)
(receive (cars cdrs) (recur other-lists)
(values (cons a cars) (cons d cdrs))))))
(values (list cars-final) '()))))))
(define (%cdrs lists)
(call-with-current-continuation
(lambda (abort)
(let recur ((lists lists))
(if (pair? lists)
(let ((lis (car lists)))
(if (null-list? lis) (abort '())
(cons (cdr lis) (recur (cdr lists)))))
'())))))
(define (%cars+ lists last-elt) ; (append! (map car lists) (list last-elt))
(let recur ((lists lists))
(if (pair? lists) (cons (caar lists) (recur (cdr lists))) (list last-elt))))
(define (every pred lis1 . lists)
(if (pair? lists)
;; N-ary case
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
(or (not (pair? heads))
(let lp ((heads heads) (tails tails))
(receive (next-heads next-tails) (%cars+cdrs tails)
(if (pair? next-heads)
(and (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))) ; Last PRED app is tail call.
;; Fast path
(or (null-list? lis1)
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(and (pred head) (lp (car tail) (cdr tail))))))))
(define (any pred lis1 . lists)
(if (pair? lists)
;; N-ary case
(receive (heads tails) (%cars+cdrs (cons lis1 lists))
(and (pair? heads)
(let lp ((heads heads) (tails tails))
(receive (next-heads next-tails) (%cars+cdrs tails)
(if (pair? next-heads)
(or (apply pred heads) (lp next-heads next-tails))
(apply pred heads)))))) ; Last PRED app is tail call.
;; Fast path
(and (not (null-list? lis1))
(let lp ((head (car lis1)) (tail (cdr lis1)))
(if (null-list? tail)
(pred head) ; Last PRED app is tail call.
(or (pred head) (lp (car tail) (cdr tail))))))))
(define (filter pred lis) ; Sleazing with EQ? makes this one faster
(let recur ((lis lis))
(if (null-list? lis) lis ; Use NOT-PAIR? to handle dotted lists.
(let ((head (car lis))
(tail (cdr lis)))
(if (pred head)
(let ((new-tail (recur tail))) ; Replicate the RECUR call so
(if (eq? tail new-tail) lis
(cons head new-tail)))
(recur tail)))))) ; this one can be a tail call.
(define (fold kons knil lis1 . lists)
(if (pair? lists)
(let lp ((lists (cons lis1 lists)) (ans knil)) ; N-ary case
(receive (cars+ans cdrs) (%cars+cdrs+ lists ans)
(if (null? cars+ans) ans ; Done.
(lp cdrs (apply kons cars+ans)))))
(let lp ((lis lis1) (ans knil)) ; Fast path
(if (null-list? lis) ans
(lp (cdr lis) (kons (car lis) ans))))))
(define (reduce f ridentity lis)
(if (null-list? lis) ridentity
(fold f (car lis) (cdr lis))))
(define (fold-right kons knil lis1 . lists)
(if (pair? lists)
(let recur ((lists (cons lis1 lists))) ; N-ary case
(let ((cdrs (%cdrs lists)))
(if (null? cdrs) knil
(apply kons (%cars+ lists (recur cdrs))))))
(let recur ((lis lis1)) ; Fast path
(if (null-list? lis) knil
(let ((head (car lis)))
(kons head (recur (cdr lis))))))))
(define (delete x lis =)
(filter (lambda (y) (not (= x y))) lis))
(define (delete-duplicates lis =)
(let recur ((lis lis))
(if (null-list? lis) lis
(let* ((x (car lis))
(tail (cdr lis))
(new-tail (recur (delete x tail =))))
(if (eq? tail new-tail) lis (cons x new-tail))))))
(define (list-index pred lis1 . lists)
(if (pair? lists)
;; N-ary case
(let lp ((lists (cons lis1 lists)) (n 0))
(receive (heads tails) (%cars+cdrs lists)
(and (pair? heads)
(if (apply pred heads) n
(lp tails (+ n 1))))))
;; Fast path
(let lp ((lis lis1) (n 0))
(and (not (null-list? lis))
(if (pred (car lis)) n (lp (cdr lis) (+ n 1)))))))
(define (drop lis k)
(let iter ((lis lis) (k k))
(if (zero? k) lis (iter (cdr lis) (- k 1)))))
(define (lset-uni-2 a b)
(cond ((null? a) b)
((member (car a) b) (lset-uni-2 (cdr a) b))
(else (cons (car a) (lset-uni-2 (cdr a) b)))))
(define (lset-union = . lists)
(reduce (lambda (lis ans) ; Compute ANS + LIS.
(cond ((null? lis) ans) ; Don't copy any lists
((null? ans) lis) ; if we don't have to.
((eq? lis ans) ans)
(else
(fold (lambda (elt ans) (if (any (lambda (x) (= x elt)) ans)
ans
(cons elt ans)))
ans lis))))
'() lists))
(define (find-tail pred list)
(let lp ((list list))
(and (not (null-list? list))
(if (pred (car list)) list
(lp (cdr list))))))
(define (member= x lis =)
(find-tail (lambda (y) (= x y)) lis))
(define (lset-difference = lis1 . lists)
(let ((lists (filter pair? lists))) ; Throw out empty lists.
(cond ((null? lists) lis1) ; Short cut
((memq lis1 lists) '()) ; Short cut
(else (filter (lambda (x)
(every (lambda (lis) (not (member= x lis =)))
lists))
lis1)))))
(define (%lset2<= = lis1 lis2) (every (lambda (x) (member= x lis2 =)) lis1))
(define (lset<= = . lists)
(or (not (pair? lists)) ; 0-ary case
(let lp ((s1 (car lists)) (rest (cdr lists)))
(or (not (pair? rest))
(let ((s2 (car rest)) (rest (cdr rest)))
(and (or (eq? s2 s1); Fast path
(%lset2<= = s1 s2)) ; Real test
(lp s2 rest)))))))
(define (lset= = . lists)
(or (not (pair? lists)) ; 0-ary case
(let lp ((s1 (car lists)) (rest (cdr lists)))
(or (not (pair? rest))
(let ((s2 (car rest))
(rest (cdr rest)))
(and (or (eq? s1 s2); Fast path
(and (%lset2<= = s1 s2) (%lset2<= = s2 s1))) ; Real test
(lp s2 rest)))))))
(define (append-map f . lists)
(apply append (apply map f lists)))
(define (concatenate lol)
(fold-right append '() lol))
;(define (last l) (car (reverse l))) ;;; pozdro997 -- LOL
(define (last-pair lis)
;(check-arg pair? lis last-pair)
(let lp ((lis lis))
(let ((tail (cdr lis)))
(if (pair? tail) (lp tail) lis))))
;;; ^ nie wiem czy mi sie to bardziej podoba jak moj 997 lol...
(define (last lis) (car (last-pair lis)))
(define (alist-delete key alist =)
(cond ((null? alist) '())
((= key (caar alist)) (cdr alist))
(else (cons (car alist) (alist-delete key (cdr alist) =)))))
;;; Map F across L, and save up all the non-false results.
(define (filter-map f lis1 . lists)
;(check-arg procedure? f filter-map)
(if (pair? lists)
(let recur ((lists (cons lis1 lists)))
(receive (cars cdrs) (%cars+cdrs lists)
(if (pair? cars)
(cond ((apply f cars) => (lambda (x) (cons x (recur cdrs))))
(else (recur cdrs))) ; Tail call in this arm.
'())))
;; Fast path.
(let recur ((lis lis1))
(if (null-list? lis) lis
(let ((tail (recur (cdr lis))))
(cond ((f (car lis)) => (lambda (x) (cons x tail)))
(else tail)))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define (lset-intersection = lis1 . lists)
(let ((lists (delete lis1 lists eq?))) ; Throw out any LIS1 vals.
(cond ((any null-list? lists) '()); Short cut
((null? lists) lis1); Short cut
(else (filter (lambda (x)
(every (lambda (lis) (member= x lis =)) lists))
lis1)))))