Skip to content

dstl/Noisify

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Noisify

Documentation Status

Noisify is a simple light-weight library for augmenting and modifying data by adding realistic noise.

Introduction

Add some human noise (typos, things in the wrong boxes etc.)

>>> from noisify.recipes import human_error
>>> test_data = {'this': 1.0, 'is': 2, 'a': 'test!'}
>>> human_noise = human_error(5)
>>> print(list(human_noise(test_data)))
[{'a': 'tset!', 'this': 2, 'is': 1.0}]
>>> print(list(human_noise(test_data)))
[{'a': 0.0, 'this': 'test!', 'is': 2}]

Add some machine noise (gaussian noise, data collection interruptions etc.)

>>> from noisify.recipes import machine_error
>>> machine_noise = machine_error(5)
>>> print(list(machine_noise(test_data)))
[{'this': 1.12786393038729, 'is': 2.1387080616716307, 'a': 'test!'}]

If you want both, just add them together

>>> combined_noise = machine_error(5) + human_error(5)
>>> print(list(combined_noise(test_data)))
[{'this': 1.23854334573554, 'is': 20.77848220943227, 'a': 'tst!'}]

Add noise to numpy arrays

>>> import numpy as np
>>> test_array = np.arange(10)
>>> print(test_array)
[0 1 2 3 4 5 6 7 8 9]
>>> print(list(combined_noise(test_array)))
[[0.09172393 2.52539794 1.38823741 2.85571154 2.85571154 6.37596668
                  4.7135771  7.28358719 6.83600156 9.40973018]]

Read an image

>>> from PIL import Image
>>> test_image = Image.open(noisify.jpg)
>>> test_image.show()

alt text

And now with noise

>>> from noisify.recipes import human_error, machine_error
>>> combined_noise = machine_error(5) + human_error(5)
>>> for out_image in combined_noise(test_image):
...     out_image.show()

alt text

Noisify allows you to build flexible data augmentation pipelines for arbitrary objects. All pipelines are built from simple high level objects, plugged together like lego. Use noisify to stress test application interfaces, verify data cleaning pipelines, and to make your ML algorithms more robust to real world conditions.

Installation

Prerequisites

Noisify relies on Python 3.5+

Installation from pipy

$ pip install noisify

Additional Information

Full documentation is available at ReadTheDocs.

Licence

Dstl (c) Crown Copyright 2019

Noisify is released under the MIT licence