Skip to content

e6data/e6data-python-connector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

e6data Python Connector

version

Introduction

The e6data Connector for Python provides an interface for writing Python applications that can connect to e6data and perform operations. It includes automatic support for blue-green deployments, ensuring seamless failover during server updates without query interruption.

Dependencies

Make sure to install below dependencies and wheel before install e6data-python-connector.

# Amazon Linux / CentOS dependencies
yum install python3-devel gcc-c++ -y

# Ubuntu/Debian dependencies
apt install python3-dev g++ -y


# Pip dependencies
pip install wheel

To install the Python package, use the command below:

pip install --no-cache-dir e6data-python-connector

Prerequisites

  • Open Inbound Port 80 in the Engine Cluster.
  • Limit access to Port 80 according to your organizational security policy. Public access is not encouraged.
  • Access Token generated in the e6data console.

Create a Connection

Use your e6data Email ID as the username and your access token as the password.

from e6data_python_connector import Connection

username = '<username>'  # Your e6data Email ID.
password = '<password>'  # Access Token generated in the e6data console.

host = '<host>'  # IP address or hostname of the cluster to be used.
database = '<database>'  # Database to perform the query on.
port = 80  # Port of the e6data engine.
catalog_name = '<catalog_name>'

conn = Connection(
    host=host,
    port=port,
    username=username,
    database=database,
    password=password
)

Connection Parameters

The Connection class supports the following parameters:

Parameter Type Required Default Description
host str Yes - IP address or hostname of the e6data cluster
port int Yes - Port of the e6data engine (typically 80)
username str Yes - Your e6data Email ID
password str Yes - Access Token generated in the e6data console
database str No None Database to perform queries on
catalog str No None Catalog name
cluster_name str No None Name of the cluster for cluster-specific operations
secure bool No False Enable SSL/TLS for secure connections
auto_resume bool No True Automatically resume cluster if suspended
grpc_options dict No None Additional gRPC configuration options

Secure Connection Example

To establish a secure connection using SSL/TLS:

conn = Connection(
    host=host,
    port=443,  # Typically 443 for secure connections
    username=username,
    password=password,
    database=database,
    cluster_name='production-cluster',
    secure=True  # Enable SSL/TLS
)

Cluster-Specific Connection

When working with multiple clusters, specify the cluster name:

conn = Connection(
    host=host,
    port=port,
    username=username,
    password=password,
    database=database,
    cluster_name='analytics-cluster-01',  # Specify cluster name
    secure=True
)

Perform a Queries & Get Results

query = 'SELECT * FROM <TABLE_NAME>'  # Replace with the query.

cursor = conn.cursor(catalog_name=catalog_name)
query_id = cursor.execute(query)  # The execute function returns a unique query ID, which can be use to abort the query.
all_records = cursor.fetchall()
for row in all_records:
   print(row)

To fetch all the records:

records = cursor.fetchall()

To fetch one record:

record = cursor.fetchone()

To fetch limited records:

limit = 500
records = cursor.fetchmany(limit)

To fetch all the records in buffer to reduce memory consumption:

records_iterator = cursor.fetchall_buffer()  # Returns generator
for item in records_iterator:
    print(item)

To get the execution plan after query execution:

import json
explain_response = cursor.explain_analyse()
query_planner = json.loads(explain_response.get('planner'))

To abort a running query:

query_id = '<query_id>'  # query id from execute function response.
cursor.cancel(query_id)

Switch database in an existing connection:

database = '<new_database_name>'  # Replace with the new database.
cursor = conn.cursor(database, catalog_name)

Get Query Time Metrics

import json
query = 'SELECT * FROM <TABLE_NAME>'

cursor = conn.cursor(catalog_name)
query_id = cursor.execute(query)  # execute function returns query id, can be use for aborting the query.
all_records = cursor.fetchall()
explain_response = cursor.explain_analyse()
query_planner = json.loads(explain_response.get('planner'))

execution_time = query_planner.get("total_query_time")  # In milliseconds
queue_time = query_planner.get("executionQueueingTime")  # In milliseconds
parsing_time = query_planner.get("parsingTime")  # In milliseconds
row_count = query_planner.rowcount

Get Schema - a list of Databases, Tables or Columns

The following code returns a dictionary of all databases, all tables and all columns connected to the cluster currently in use. This function can be used without passing database name to get list of all databases.

databases = conn.get_schema_names()  # To get list of databases.
print(databases)

database = '<database_name>'  # Replace with actual database name.
tables = conn.get_tables(database=database)  # To get list of tables from a database.
print(tables)

table_name = '<table_name>'  # Replace with actual table name.
columns = conn.get_tables(database=database, table=table_name)  # To get the list of columns from a table.
columns_with_type = list()
"""
Getting the column name and type.
"""
for column in columns:
   columns_with_type.append(dict(column_name=column.fieldName, column_type=column.fieldType))
print(columns_with_type)

Code Hygiene

It is recommended to clear the cursor, close the cursor and close the connection after running a function as a best practice. This enhances performance by clearing old data from memory.

cursor.clear() # Not needed when aborting a query
cursor.close()
conn.close()

Code Example

The following code is an example which combines a few functions described above.

from e6data_python_connector import Connection
import json

username = '<username>'  # Your e6data Email ID.
password = '<password>'  # Access Token generated in the e6data console.

host = '<host>'  # IP address or hostname of the cluster to be used.
database = '<database>'  # # Database to perform the query on.
port = 80  # Port of the e6data engine.

sql_query = 'SELECT * FROM <TABLE_NAME>'  # Replace with the actual query.

catalog_name = '<catalog_name>'  # Replace with the actual catalog name.

conn = Connection(
    host=host,
    port=port,
    username=username,
    database=database,
    password=password
)

cursor = conn.cursor(db_name=database, catalog_name=catalog_name)
query_id = cursor.execute(sql_query)
all_records = cursor.fetchall()
explain_response = cursor.explain_analyse()
planner_result = json.loads(explain_response.get('planner'))
execution_time = planner_result.get("total_query_time") / 1000  # Converting into seconds.
row_count = cursor.rowcount
columns = [col[0] for col in cursor.description]  # Get the column names and merge them with the results.
results = []
for row in all_records:
   row = dict(zip(columns, row))
   results.append(row)
   print(row)
print('Total row count {}, Execution Time (seconds): {}'.format(row_count, execution_time))
cursor.clear()
cursor.close()
conn.close()

Zero Downtime Deployment

πŸš€ Zero Downtime Features

The e6data Python Connector provides automatic zero downtime deployment support through intelligent blue-green deployment strategy management:

βœ… No Code Changes Required

Your existing applications automatically benefit from zero downtime deployment without any modifications:

# Your existing code works exactly the same
from e6data_python_connector import Connection

conn = Connection(
    host='your-host',
    port=80,
    username='your-email',
    password='your-token',
    database='your-database'
)

cursor = conn.cursor()
cursor.execute("SELECT * FROM your_table")
results = cursor.fetchall()

πŸ”„ Automatic Strategy Detection

  • Detects active deployment strategy (blue/green) on connection
  • Caches strategy information for optimal performance
  • Automatically switches strategies when deployments occur

πŸ›‘οΈ Seamless Query Protection

  • Running queries continue uninterrupted during deployments
  • New queries automatically use the new deployment strategy
  • Graceful transitions ensure no query loss or failures

⚑ Performance Optimized

  • < 100ms additional latency on first connection (one-time cost)
  • 0ms overhead for 95% of queries (cached strategy)
  • < 1KB additional memory usage per connection

πŸ”§ Thread & Process Safe

  • Full support for multi-threaded applications
  • Process-safe shared memory management
  • Concurrent query execution without conflicts

Advanced Configuration (Optional)

For enhanced monitoring and performance tuning:

# Enhanced gRPC configuration for zero downtime
grpc_options = {
    'keepalive_timeout_ms': 60000,      # 1 minute keepalive timeout
    'keepalive_time_ms': 30000,         # 30 seconds keepalive interval
    'max_receive_message_length': 100 * 1024 * 1024,  # 100MB
    'max_send_message_length': 100 * 1024 * 1024,     # 100MB
}

conn = Connection(
    host='your-host',
    port=80,
    username='your-email',
    password='your-token',
    database='your-database',
    grpc_options=grpc_options
)

Environment Configuration

Configure zero downtime features using environment variables:

# Strategy cache timeout (default: 300 seconds)
export E6DATA_STRATEGY_CACHE_TIMEOUT=300

# Maximum retry attempts (default: 5)
export E6DATA_MAX_RETRY_ATTEMPTS=5

# Enable debug logging for strategy operations
export E6DATA_STRATEGY_LOG_LEVEL=INFO

Testing Zero Downtime

Use the included mock server for testing and development:

# Terminal 1: Start mock server
python mock_grpc_server.py

# Terminal 2: Run test client
python test_mock_server.py

# Or use the convenience script
./run_mock_test.sh

πŸ“š Comprehensive Documentation

Explore detailed documentation in the docs/zero-downtime/ directory:

Key Benefits

Feature Benefit
Zero Downtime Applications continue running during e6data deployments
Automatic No code changes or manual intervention required
Reliable Robust error handling and automatic recovery
Fast Minimal performance impact with intelligent caching
Safe Thread-safe and process-safe operation
Monitored Comprehensive logging and monitoring capabilities

Migration

Existing applications automatically benefit from zero downtime deployment:

  1. Update connector: pip install --upgrade e6data-python-connector
  2. No code changes: Your existing code works without modifications
  3. Monitor: Use enhanced logging to monitor strategy transitions
  4. Validate: Test with your existing applications

For detailed migration instructions, see the Migration Guide.

Performance Optimization

Memory Efficiency

  • Use fetchall_buffer() for memory-efficient large result sets
  • Automatic cleanup of query-strategy mappings
  • Bounded memory usage with TTL-based caching

Network Performance

  • Configure gRPC options for optimal network performance
  • Intelligent keepalive settings for connection stability
  • Message size optimization for large queries

Connection Management

  • Enable connection pooling for better resource utilization
  • Automatic connection health monitoring
  • Graceful connection recovery and retry logic

See TECH_DOC.md for detailed technical documentation.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 10