-
Notifications
You must be signed in to change notification settings - Fork 397
/
Copy pathMemoryPoolHybrid.cpp
1135 lines (974 loc) · 43.4 KB
/
MemoryPoolHybrid.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*******************************************************************************
* Copyright (c) 1991, 2019 IBM Corp. and others
*
* This program and the accompanying materials are made available under
* the terms of the Eclipse Public License 2.0 which accompanies this
* distribution and is available at https://www.eclipse.org/legal/epl-2.0/
* or the Apache License, Version 2.0 which accompanies this distribution and
* is available at https://www.apache.org/licenses/LICENSE-2.0.
*
* This Source Code may also be made available under the following
* Secondary Licenses when the conditions for such availability set
* forth in the Eclipse Public License, v. 2.0 are satisfied: GNU
* General Public License, version 2 with the GNU Classpath
* Exception [1] and GNU General Public License, version 2 with the
* OpenJDK Assembly Exception [2].
*
* [1] https://www.gnu.org/software/classpath/license.html
* [2] http://openjdk.java.net/legal/assembly-exception.html
*
* SPDX-License-Identifier: EPL-2.0 OR Apache-2.0 OR GPL-2.0 WITH Classpath-exception-2.0 OR LicenseRef-GPL-2.0 WITH Assembly-exception
*******************************************************************************/
#include "MemoryPoolHybrid.hpp"
#include "AllocateDescription.hpp"
#include "Debug.hpp"
#include "EnvironmentBase.hpp"
#include "GCExtensionsBase.hpp"
#include "GlobalCollector.hpp"
#include "Heap.hpp"
#include "MemoryPool.hpp"
#include "MemorySpace.hpp"
#include "MemorySubSpace.hpp"
#include "HeapRegionDescriptor.hpp"
#include "HeapRegionManager.hpp"
#include "HeapLinkedFreeHeader.hpp"
#include "LargeObjectAllocateStats.hpp"
#include "ParallelSweepChunk.hpp"
#include "SweepHeapSectioning.hpp"
#include "SweepPoolState.hpp"
/**
* Create and initialize a new instance of the receiver.
*/
MM_MemoryPoolHybrid*
MM_MemoryPoolHybrid::newInstance(MM_EnvironmentBase* env, uintptr_t minimumFreeEntrySize, uintptr_t maxSplit)
{
return newInstance(env, minimumFreeEntrySize, maxSplit, "Unknown");
}
/**
* Create and initialize a new instance of the receiver.
*/
MM_MemoryPoolHybrid*
MM_MemoryPoolHybrid::newInstance(MM_EnvironmentBase* env, uintptr_t minimumFreeEntrySize, uintptr_t maxSplit, const char* name)
{
MM_MemoryPoolHybrid* memoryPool;
memoryPool = (MM_MemoryPoolHybrid*)env->getForge()->allocate(sizeof(MM_MemoryPoolHybrid), OMR::GC::AllocationCategory::FIXED, OMR_GET_CALLSITE());
if (memoryPool) {
memoryPool = new (memoryPool) MM_MemoryPoolHybrid(env, minimumFreeEntrySize, maxSplit, name);
if (!memoryPool->initialize(env)) {
memoryPool->kill(env);
memoryPool = NULL;
}
}
return memoryPool;
}
/****************************************
* Allocation
****************************************
*/
MMINLINE MM_HeapLinkedFreeHeader*
MM_MemoryPoolHybrid::internalAllocateFromList(MM_EnvironmentBase* env, uintptr_t sizeInBytesRequired, uintptr_t curFreeList, MM_HeapLinkedFreeHeader** previousFreeEntry, uintptr_t* largestFreeEntry)
{
bool const compressed = compressObjectReferences();
uintptr_t walkCountCurrentList = 0;
J9ModronAllocateHint* allocateHintUsed = NULL;
MM_HeapLinkedFreeHeader* candidateHintEntry = NULL;
uintptr_t candidateHintSize = 0;
uintptr_t currentFreeEntrySize = 0;
MM_HeapLinkedFreeHeader* currentFreeEntry = _heapFreeLists[curFreeList]._freeList;
*previousFreeEntry = NULL;
/* Large object - use a hint if it is available */
allocateHintUsed = _heapFreeLists[curFreeList].findHint(sizeInBytesRequired);
if (allocateHintUsed) {
currentFreeEntry = allocateHintUsed->heapFreeHeader;
candidateHintSize = allocateHintUsed->size;
Assert_MM_true(currentFreeEntry->getSize() <= allocateHintUsed->size);
Assert_MM_true(currentFreeEntry->getSize() < sizeInBytesRequired);
}
while (NULL != currentFreeEntry) {
currentFreeEntrySize = currentFreeEntry->getSize();
/* while we are walking, keep track of the largest free entry.
* We will need this in the case of allocation failure to update
* the pool's largest free */
if (currentFreeEntrySize > *largestFreeEntry) {
*largestFreeEntry = currentFreeEntrySize;
}
if (sizeInBytesRequired <= currentFreeEntrySize) {
if (((walkCountCurrentList >= J9MODRON_ALLOCATION_MANAGER_HINT_MAX_WALK) || ((walkCountCurrentList > 1) && allocateHintUsed))) {
_heapFreeLists[curFreeList].addHint(candidateHintEntry, candidateHintSize);
}
break;
}
if (candidateHintSize < currentFreeEntrySize) {
candidateHintSize = currentFreeEntrySize;
}
candidateHintEntry = currentFreeEntry;
walkCountCurrentList += 1;
*previousFreeEntry = currentFreeEntry;
currentFreeEntry = currentFreeEntry->getNext(compressed);
Assert_MM_true((NULL == currentFreeEntry) || (currentFreeEntry > *previousFreeEntry));
}
_allocSearchCount += walkCountCurrentList;
return currentFreeEntry;
}
void*
MM_MemoryPoolHybrid::internalAllocate(MM_EnvironmentBase* env, uintptr_t sizeInBytesRequired, bool lockingRequired, MM_LargeObjectAllocateStats* largeObjectAllocateStatsForFreeList)
{
bool const compressed = compressObjectReferences();
MM_HeapLinkedFreeHeader* currentFreeEntry = NULL;
MM_HeapLinkedFreeHeader* previousFreeEntry = NULL;
uintptr_t largestFreeEntry = 0;
uintptr_t suggestedFreeList = 0;
uintptr_t curFreeList = 0;
MM_HeapLinkedFreeHeader* recycleEntry = NULL;
uintptr_t recycleEntrySize = 0;
void* addrBase = NULL;
/* first pass iterating if skipReserved = true */
bool skipReserved = true;
retry:
bool firstIteration = true;
bool jumpedToSuggested = false;
if (skipReserved) {
curFreeList = _currentThreadFreeList[env->getEnvironmentId() % _heapFreeListCount];
} else {
/* tried all lists and the only thing to try is reserved free list */
curFreeList = _heapFreeListCount;
}
suggestedFreeList = curFreeList;
do {
if (NULL != _heapFreeLists[curFreeList]._freeList) {
if (lockingRequired) {
_heapFreeLists[curFreeList]._lock.acquire();
_heapFreeLists[curFreeList]._timesLocked += 1;
}
currentFreeEntry = internalAllocateFromList(env, sizeInBytesRequired, curFreeList, &previousFreeEntry, &largestFreeEntry);
if (NULL != currentFreeEntry) {
/* found a freeEntry; will release lock only after we handle the remainder */
break;
}
Assert_MM_true(NULL == currentFreeEntry);
if (lockingRequired) {
_heapFreeLists[curFreeList]._lock.release();
}
}
jumpedToSuggested = false;
if (firstIteration) {
firstIteration = false;
suggestedFreeList = findGoodStartFreeList();
curFreeList = suggestedFreeList;
jumpedToSuggested = true;
} else {
curFreeList = (curFreeList + 1) % _heapFreeListCount;
}
} while ((jumpedToSuggested || (curFreeList != suggestedFreeList)) && skipReserved);
/* Check if an entry was found */
if (NULL == currentFreeEntry) {
if (skipReserved) {
skipReserved = false;
goto retry;
}
#if defined(OMR_GC_CONCURRENT_SWEEP)
if (_memorySubSpace->replenishPoolForAllocate(env, this, sizeInBytesRequired)) {
skipReserved = true;
goto retry;
}
#endif /* OMR_GC_CONCURRENT_SWEEP) */
/* Since we failed to allocate, update the largest free entry so that outside callers will be able to skip this pool, next time, in Tarok configurations */
setLargestFreeEntry(largestFreeEntry);
return NULL;
}
/* Check if this free entry looks like a dead object. */
Assert_MM_true(env->getExtensions()->objectModel.isDeadObject((omrobjectptr_t)currentFreeEntry));
/* Adjust the free memory size */
Assert_MM_true(_heapFreeLists[curFreeList]._freeSize >= sizeInBytesRequired);
_heapFreeLists[curFreeList]._freeSize -= sizeInBytesRequired;
_largeObjectAllocateStatsForFreeList[curFreeList].decrementFreeEntrySizeClassStats(currentFreeEntry->getSize());
/* Update allocation statistics */
_allocCount += 1;
_allocBytes += sizeInBytesRequired;
/* Determine what to do with the recycled portion of the free entry */
recycleEntrySize = currentFreeEntry->getSize() - sizeInBytesRequired;
addrBase = (void*)currentFreeEntry;
recycleEntry = (MM_HeapLinkedFreeHeader*)(((uint8_t*)currentFreeEntry) + sizeInBytesRequired);
if (recycleHeapChunkForFreeList(env, recycleEntry, ((uint8_t*)recycleEntry) + recycleEntrySize, previousFreeEntry, currentFreeEntry->getNext(compressed), curFreeList)) {
_heapFreeLists[curFreeList].updateHint(currentFreeEntry, recycleEntry);
_largeObjectAllocateStatsForFreeList[curFreeList].incrementFreeEntrySizeClassStats(recycleEntrySize);
} else {
/* Adjust the free memory size and count */
Assert_MM_true(_heapFreeLists[curFreeList]._freeSize >= recycleEntrySize);
Assert_MM_true(_heapFreeLists[curFreeList]._freeCount > 0);
_heapFreeLists[curFreeList]._freeSize -= recycleEntrySize;
_heapFreeLists[curFreeList]._freeCount -= 1;
/* Update discard bytes if necessary */
_allocDiscardedBytes += recycleEntrySize;
/* Removed from the free list - Kill the hint if necessary */
_heapFreeLists[curFreeList].removeHint(currentFreeEntry);
}
/* Was our initial or suggested freelist empty? If not, go back and use it more. */
if (NULL != _heapFreeLists[suggestedFreeList]._freeList) {
_currentThreadFreeList[env->getEnvironmentId() % _heapFreeListCount] = suggestedFreeList;
}
/* Collector object allocate stats for Survivor are not interesting (_largeObjectCollectorAllocateStatsForFreeList is null for Survivor) */
if (NULL != largeObjectAllocateStatsForFreeList) {
largeObjectAllocateStatsForFreeList[curFreeList].allocateObject(sizeInBytesRequired);
}
if (lockingRequired) {
_heapFreeLists[curFreeList]._lock.release();
}
Assert_MM_true(NULL != addrBase);
return addrBase;
}
bool
MM_MemoryPoolHybrid::internalAllocateTLH(MM_EnvironmentBase* env, uintptr_t maximumSizeInBytesRequired, void*& addrBase, void*& addrTop, bool lockingRequired, MM_LargeObjectAllocateStats* largeObjectAllocateStatsForFreeList)
{
bool const compressed = compressObjectReferences();
uintptr_t freeEntrySize = 0;
void* topOfRecycledChunk = NULL;
MM_HeapLinkedFreeHeader* entryNext = NULL;
MM_HeapLinkedFreeHeader* freeEntry = NULL;
MM_HeapLinkedFreeHeader* previousFreeEntry = NULL;
uintptr_t consumedSize = 0;
uintptr_t recycleEntrySize = 0;
uintptr_t suggestedFreeList;
uintptr_t curFreeList;
/* first pass iterating if skipReserved = true */
bool skipReserved = true;
retry:
bool firstIteration = true;
bool jumpedToSuggested = false;
if (skipReserved) {
curFreeList = _currentThreadFreeList[env->getEnvironmentId() % _heapFreeListCount];
} else {
/* tried all lists and the only thing to try is reserved free list */
curFreeList = _heapFreeListCount;
}
suggestedFreeList = curFreeList;
do {
if (NULL != _heapFreeLists[curFreeList]._freeList) {
if (lockingRequired) {
_heapFreeLists[curFreeList]._lock.acquire();
_heapFreeLists[curFreeList]._timesLocked += 1;
}
freeEntry = _heapFreeLists[curFreeList]._freeList;
if (NULL != freeEntry) {
freeEntrySize = freeEntry->getSize();
break;
}
if (lockingRequired) {
_heapFreeLists[curFreeList]._lock.release();
}
}
jumpedToSuggested = false;
if (firstIteration) {
firstIteration = false;
suggestedFreeList = findGoodStartFreeList();
curFreeList = suggestedFreeList;
jumpedToSuggested = true;
} else {
curFreeList = (curFreeList + 1) % _heapFreeListCount;
}
} while ((jumpedToSuggested || (suggestedFreeList != curFreeList)) && skipReserved);
/* Check if an entry was found */
if (NULL == freeEntry) {
if (skipReserved) {
skipReserved = false;
goto retry;
}
#if defined(OMR_GC_CONCURRENT_SWEEP)
if (_memorySubSpace->replenishPoolForAllocate(env, this, _minimumFreeEntrySize)) {
skipReserved = true;
goto retry;
}
#endif /* OMR_GC_CONCURRENT_SWEEP */
/* if we failed to allocate a TLH, this pool is either full or so heavily fragmented that it is effectively full */
setLargestFreeEntry(0);
return false;
}
/* Check if this free entry looks like a dead object. */
Assert_MM_true(env->getExtensions()->objectModel.isDeadObject((omrobjectptr_t)freeEntry));
/* Update our current free list */
_currentThreadFreeList[env->getEnvironmentId() % _heapFreeListCount] = curFreeList;
/* Consume the bytes and set the return pointer values */
Assert_MM_true(freeEntrySize >= _minimumFreeEntrySize);
consumedSize = (maximumSizeInBytesRequired > freeEntrySize) ? freeEntrySize : maximumSizeInBytesRequired;
_largeObjectAllocateStatsForFreeList[curFreeList].decrementFreeEntrySizeClassStats(freeEntrySize);
/* If the leftover chunk is smaller than the minimum size, hand it out */
recycleEntrySize = freeEntrySize - consumedSize;
if (recycleEntrySize && (recycleEntrySize < _minimumFreeEntrySize)) {
consumedSize += recycleEntrySize;
recycleEntrySize = 0;
}
/* Adjust the free memory size */
Assert_MM_true(_heapFreeLists[curFreeList]._freeSize >= consumedSize);
_heapFreeLists[curFreeList]._freeSize -= consumedSize;
_allocCount += 1;
_allocBytes += consumedSize;
/* Collector TLH allocate stats for Survivor are not interesting (_largeObjectCollectorAllocateStatsForFreeList is null for Survivor) */
if (NULL != largeObjectAllocateStatsForFreeList) {
largeObjectAllocateStatsForFreeList[curFreeList].incrementTlhAllocSizeClassStats(consumedSize);
}
addrBase = (void*)freeEntry;
addrTop = (void*)(((uint8_t*)addrBase) + consumedSize);
topOfRecycledChunk = ((uint8_t*)addrTop) + recycleEntrySize;
entryNext = freeEntry->getNext(compressed);
/* Recycle the remaining entry back onto the free list (if applicable) */
if (!recycleHeapChunkForFreeList(env, addrTop, topOfRecycledChunk, previousFreeEntry, entryNext, curFreeList)) {
/* Adjust the free memory size and count */
Assert_MM_true(_heapFreeLists[curFreeList]._freeSize >= recycleEntrySize);
Assert_MM_true(_heapFreeLists[curFreeList]._freeCount > 0);
_heapFreeLists[curFreeList]._freeSize -= recycleEntrySize;
_heapFreeLists[curFreeList]._freeCount -= 1;
_allocDiscardedBytes += recycleEntrySize;
_heapFreeLists[curFreeList].removeHint(freeEntry);
} else {
_heapFreeLists[curFreeList].updateHint(freeEntry, (MM_HeapLinkedFreeHeader*)addrTop);
_largeObjectAllocateStatsForFreeList[curFreeList].incrementFreeEntrySizeClassStats(recycleEntrySize);
}
if (lockingRequired) {
_heapFreeLists[curFreeList]._lock.release();
}
return true;
}
/****************************************
* Free list building
****************************************
*/
MMINLINE void
MM_MemoryPoolHybrid::appendToReservedFreeList(MM_EnvironmentBase* env, void* address, uintptr_t size)
{
bool const compressed = compressObjectReferences();
MM_HeapLinkedFreeHeader* freeListTail = getReservedFreeList()->_freeList;
while ((NULL != freeListTail) && (NULL != freeListTail->getNext(compressed))) {
freeListTail = freeListTail->getNext(compressed);
}
connectInnerMemoryToPool(env, (MM_HeapLinkedFreeHeader*)address, size, (MM_HeapLinkedFreeHeader*)freeListTail);
if (NULL == freeListTail) {
getReservedFreeList()->_freeList = (MM_HeapLinkedFreeHeader*)address;
}
getReservedFreeList()->_freeSize += size;
getReservedFreeList()->_freeCount += 1;
}
void
MM_MemoryPoolHybrid::appendToFreeList(MM_EnvironmentBase* env, J9ModronFreeList* freeList, MM_HeapLinkedFreeHeader* freeListTail, MM_HeapLinkedFreeHeader* newFreeEntry)
{
bool const compressed = compressObjectReferences();
setNextForFreeEntryInFreeList(freeList, freeListTail, newFreeEntry);
newFreeEntry->setNext(NULL, compressed);
uintptr_t size = newFreeEntry->getSize();
freeList->_freeSize += size;
freeList->_freeCount += 1;
_largeObjectAllocateStats->incrementFreeEntrySizeClassStats(size);
}
MMINLINE void
MM_MemoryPoolHybrid::appendToFreeList(MM_EnvironmentBase* env, J9ModronFreeList* freeList, MM_HeapLinkedFreeHeader* freeListTail, void* lowAddress, uintptr_t size)
{
createFreeEntry(env, lowAddress, (uint8_t*)lowAddress+size);
appendToFreeList(env, freeList, freeListTail, (MM_HeapLinkedFreeHeader*)lowAddress);
}
uintptr_t
MM_MemoryPoolHybrid::coalesceExpandRangeWithLastFreeEntry(MM_HeapLinkedFreeHeader* lastFreeEntry, J9ModronFreeList* freelist, void* lowAddress, uintptr_t expandSize)
{
uintptr_t expandedSize = expandSize;
if (NULL == lastFreeEntry) {
return expandedSize;
}
uintptr_t size = lastFreeEntry->getSize();
/* Check if the range can be fused to the tail previous free entry */
if (lowAddress == (void*)(((uintptr_t)lastFreeEntry) + size)) {
expandedSize += size;
_largeObjectAllocateStats->decrementFreeEntrySizeClassStats(size);
lastFreeEntry->setSize(expandedSize);
if (expandedSize > _largestFreeEntry) {
_largestFreeEntry = expandedSize;
}
/* Update the free list information */
freelist->_freeSize += expandSize;
_largeObjectAllocateStats->incrementFreeEntrySizeClassStats(expandedSize);
}
return expandedSize;
}
uintptr_t
MM_MemoryPoolHybrid::coalesceNewFreeEntryWithLastFreeEntry(MM_HeapLinkedFreeHeader* lastFreeEntry, J9ModronFreeList* freelist, MM_HeapLinkedFreeHeader* newFreeEntry)
{
uintptr_t expandedSize = newFreeEntry->getSize();
if (NULL == lastFreeEntry) {
return expandedSize;
}
uintptr_t size = lastFreeEntry->getSize();
/* Do we need to coalesce ?*/
if ((uint8_t*)lastFreeEntry->afterEnd() == (uint8_t*)newFreeEntry) {
_largeObjectAllocateStats->decrementFreeEntrySizeClassStats(size);
freelist->_freeSize += expandedSize;
expandedSize += size;
_largeObjectAllocateStats->incrementFreeEntrySizeClassStats(expandedSize);
}
return expandedSize;
}
void
MM_MemoryPoolHybrid::moveLastFreeEntryToReservedFreeList(MM_EnvironmentBase* env, J9ModronFreeList* fromFreeList, MM_HeapLinkedFreeHeader* previousFreeEntry, MM_HeapLinkedFreeHeader* freeEntry, J9ModronFreeList* toFreeList, MM_HeapLinkedFreeHeader* toFreeListTail)
{
bool const compressed = compressObjectReferences();
Assert_MM_true(NULL == freeEntry->getNext(compressed));
setNextForFreeEntryInFreeList(fromFreeList, previousFreeEntry, NULL);
fromFreeList->_freeSize -= freeEntry->getSize();
fromFreeList->_freeCount -= 1;
setNextForFreeEntryInFreeList(toFreeList, toFreeListTail, freeEntry);
toFreeList->_freeSize += freeEntry->getSize();
toFreeList->_freeCount += 1;
}
bool
MM_MemoryPoolHybrid::tryContractWithRangeInFreelist(MM_EnvironmentBase* env, J9ModronFreeList* freeList, uintptr_t contractSize, void* lowAddress, void* highAddress)
{
bool const compressed = compressObjectReferences();
bool ret = false;
MM_HeapLinkedFreeHeader* previousFreeEntry = NULL;
MM_HeapLinkedFreeHeader* currentFreeEntry = NULL;
MM_HeapLinkedFreeHeader* nextFreeEntry = NULL;
if (NULL != freeList->_freeList) {
currentFreeEntry = freeList->_freeList;
previousFreeEntry = NULL;
while (NULL != (nextFreeEntry = currentFreeEntry->getNext(compressed))) {
previousFreeEntry = currentFreeEntry;
currentFreeEntry = nextFreeEntry;
}
if ((currentFreeEntry + currentFreeEntry->getSize()) == highAddress) {
uintptr_t totalContractSize = contractSize;
uintptr_t contractCount = 1;
_largeObjectAllocateStats->decrementFreeEntrySizeClassStats(currentFreeEntry->getSize());
Assert_MM_true((MM_HeapLinkedFreeHeader*)lowAddress < currentFreeEntry);
if (currentFreeEntry < (MM_HeapLinkedFreeHeader*)lowAddress) {
if (createFreeEntry(env, currentFreeEntry, lowAddress, NULL, nextFreeEntry)) {
contractCount -= 1;
_largeObjectAllocateStats->incrementFreeEntrySizeClassStats(currentFreeEntry->getSize());
} else {
/* Abandon the leading entry - it is too small to be on the free list */
uintptr_t leadingSize = ((uintptr_t)lowAddress) - ((uintptr_t)currentFreeEntry);
totalContractSize += leadingSize;
currentFreeEntry = NULL;
}
}
Assert_MM_true((NULL == currentFreeEntry) || (previousFreeEntry < currentFreeEntry));
setNextForFreeEntryInFreeList(freeList, previousFreeEntry, currentFreeEntry);
/* Adjust the free memory data */
Assert_MM_true(freeList->_freeSize >= totalContractSize);
freeList->_freeSize -= totalContractSize;
freeList->_freeCount -= contractCount;
ret = true;
}
}
return ret;
}
void
MM_MemoryPoolHybrid::postProcess(MM_EnvironmentBase* env, Cause cause)
{
bool const compressed = compressObjectReferences();
uintptr_t lastFreeListIndex = _heapFreeListCount - 1;
if (cause == forCompact && (lastFreeListIndex != 0)) {
/* Move all the compact items to the beginning of the lists */
_heapFreeLists[0]._freeList = _heapFreeLists[lastFreeListIndex]._freeList;
_heapFreeLists[0]._freeCount = _heapFreeLists[lastFreeListIndex]._freeCount;
_heapFreeLists[0]._freeSize = _heapFreeLists[lastFreeListIndex]._freeSize;
_heapFreeLists[lastFreeListIndex]._freeList = NULL;
_heapFreeLists[lastFreeListIndex]._freeCount = 0;
_heapFreeLists[lastFreeListIndex]._freeSize = 0;
}
if (!_heapFreeLists[0]._freeList) {
return;
}
/* Free list splitting by equal memory size */
uintptr_t freeListSplitSize = _heapFreeLists[0]._freeSize / _heapFreeListCount;
uintptr_t currentFreeListIndex = 0;
getReservedFreeList()->reset();
if (cause == forSweep) {
_heapFreeLists[0]._freeSize = _sweepPoolState->_sweepFreeBytes;
_heapFreeLists[0]._freeCount = _sweepPoolState->_sweepFreeHoles;
freeListSplitSize = _heapFreeLists[0]._freeSize / _heapFreeListCount;
/* remove largestFreeEntry from freeList, add it into reservedFreeList */
if (0 < _sweepPoolState->_largestFreeEntry) {
MM_HeapLinkedFreeHeader* largestFreeEntry;
if (NULL == _sweepPoolState->_previousLargestFreeEntry) {
largestFreeEntry = _heapFreeLists[0]._freeList;
_heapFreeLists[0]._freeList = largestFreeEntry->getNext(compressed);
} else {
largestFreeEntry = _sweepPoolState->_previousLargestFreeEntry->getNext(compressed);
_sweepPoolState->_previousLargestFreeEntry->setNext(largestFreeEntry->getNext(compressed), compressed);
}
Assert_MM_true(_sweepPoolState->_largestFreeEntry == largestFreeEntry->getSize());
_heapFreeLists[0]._freeSize -= largestFreeEntry->getSize();
_heapFreeLists[0]._freeCount -= 1;
appendToReservedFreeList(env, (void*) largestFreeEntry, largestFreeEntry->getSize());
}
/* Free list splitting at sweep chunk granularity.
* Faster but less precise splits compared to free list entry granularity.
*/
MM_GCExtensionsBase* extensions = env->getExtensions();
MM_ParallelSweepChunk* chunk = NULL;
MM_SweepHeapSectioningIterator sectioningIterator(extensions->sweepHeapSectioning);
uintptr_t freeSize = _heapFreeLists[0]._freeSize;
uintptr_t freeCount = _heapFreeLists[0]._freeCount;
uintptr_t accumulatedFreeSize = 0;
uintptr_t accumulatedFreeHoles = 0;
/* Iterate over all the sweep chunks to find split candidates. */
uintptr_t processedChunkCount = 0;
for (chunk = sectioningIterator.nextChunk(); NULL != chunk; chunk = sectioningIterator.nextChunk()) {
if (processedChunkCount >= extensions->splitFreeListNumberChunksPrepared) {
/* We have processed all sweep chunks. */
break;
}
++processedChunkCount;
if ((currentFreeListIndex + 1) >= _heapFreeListCount) {
/* We have filled up all the free lists. */
break;
}
if ((this != chunk->memoryPool) || (NULL == chunk->_splitCandidate)) {
/* This chunk is not a split candidate for this pool. */
continue;
}
/* Check if we want to split here. */
uintptr_t currentFreeListSize = chunk->_accumulatedFreeSize - accumulatedFreeSize;
if (currentFreeListSize >= freeListSplitSize) {
/* Split here. */
/* Fill in the size and holes of the current free list. */
_heapFreeLists[currentFreeListIndex]._freeCount = chunk->_accumulatedFreeHoles - accumulatedFreeHoles;
_heapFreeLists[currentFreeListIndex]._freeSize = currentFreeListSize;
/* Terminate the tail of the current free list. */
chunk->_splitCandidatePreviousEntry->setNext(NULL, compressed);
/**
* Identify previous reserved entry from the previous LargestFreeEntry which is set during sweep
* if previousLargestFreeEntry == splitCandidatePreviousEntry, it means largestFreeEntry == splitCandidateEntry and the largestFreeEntry is in the next free list
* if previousLargestFreeEntry < splitCandidatePreviousEntry, it means the largestFreeEntry is in current freeList
*/
/* Set the head of the new free list. */
currentFreeListIndex += 1;
_heapFreeLists[currentFreeListIndex]._freeList = chunk->_splitCandidate;
/* Update our accumulated stats. */
accumulatedFreeSize = chunk->_accumulatedFreeSize;
accumulatedFreeHoles = chunk->_accumulatedFreeHoles;
}
}
/* Update the current free list stats. It gets the leftovers. */
_heapFreeLists[currentFreeListIndex]._freeSize = freeSize - accumulatedFreeSize;
_heapFreeLists[currentFreeListIndex]._freeCount = freeCount - accumulatedFreeHoles;
} else {
uintptr_t reservedFreeEntrySize = 0;
MM_HeapLinkedFreeHeader* previousReservedFreeEntry = NULL;
uintptr_t reservedFreeListIndex = 0;
bool reservedFreeEntryAvaliable = false;
/* Free list splitting at free list entry granularity.
* Slower but necessary when you don't have valid sweep chunks.
*/
MM_HeapLinkedFreeHeader* previousFreeList = NULL;
MM_HeapLinkedFreeHeader* currentFreeList = _heapFreeLists[0]._freeList;
_heapFreeLists[0]._freeCount = 0;
_heapFreeLists[0]._freeSize = 0;
while (NULL != currentFreeList) {
_heapFreeLists[currentFreeListIndex]._freeSize += currentFreeList->getSize();
_heapFreeLists[currentFreeListIndex]._freeCount += 1;
if (currentFreeList->getSize() > reservedFreeEntrySize) {
reservedFreeEntrySize = currentFreeList->getSize();
reservedFreeListIndex = currentFreeListIndex;
previousReservedFreeEntry = previousFreeList;
reservedFreeEntryAvaliable = true;
}
previousFreeList = currentFreeList;
currentFreeList = currentFreeList->getNext(compressed);
if ((_heapFreeLists[currentFreeListIndex]._freeSize >= freeListSplitSize) && (currentFreeListIndex < lastFreeListIndex)) {
previousFreeList->setNext(NULL, compressed);
previousFreeList = NULL;
currentFreeListIndex += 1;
_heapFreeLists[currentFreeListIndex]._freeList = currentFreeList;
_heapFreeLists[currentFreeListIndex]._freeSize = 0;
_heapFreeLists[currentFreeListIndex]._freeCount = 0;
}
}
if (reservedFreeEntryAvaliable) {
/* remove largestFreeEntry from freeList, add it into reservedFreeList */
MM_HeapLinkedFreeHeader* largestFreeEntry;
if (NULL == previousReservedFreeEntry) {
largestFreeEntry = _heapFreeLists[reservedFreeListIndex]._freeList;
_heapFreeLists[reservedFreeListIndex]._freeList = largestFreeEntry->getNext(compressed);
} else {
largestFreeEntry = previousReservedFreeEntry->getNext(compressed);
previousReservedFreeEntry->setNext(largestFreeEntry->getNext(compressed), compressed);
}
_heapFreeLists[currentFreeListIndex]._freeSize -= largestFreeEntry->getSize();
_heapFreeLists[currentFreeListIndex]._freeCount -= 1;
appendToReservedFreeList(env, (void*) largestFreeEntry, largestFreeEntry->getSize());
}
}
/* reset thread starting positions */
for (currentFreeListIndex = 0; currentFreeListIndex < _heapFreeListCount; ++currentFreeListIndex) {
_currentThreadFreeList[currentFreeListIndex] = currentFreeListIndex;
}
#if 0
Assert_MM_true(printFreeListValidity(env));
#endif
}
/**
* Add the range of memory to the free list of the receiver.
*
* @param expandSize Number of bytes to remove from the memory pool
* @param lowAddress Low address of memory to remove (inclusive)
* @param highAddress High address of memory to remove (non inclusive)
*
*/
void
MM_MemoryPoolHybrid::expandWithRange(MM_EnvironmentBase* env, uintptr_t expandSize, void* lowAddress, void* highAddress, bool canCoalesce)
{
if (0 == expandSize) {
return;
}
/* Handle the entries that are too small to make the free list */
if (expandSize < _minimumFreeEntrySize) {
abandonHeapChunk(lowAddress, highAddress);
return;
}
bool const compressed = compressObjectReferences();
MM_HeapLinkedFreeHeader* lastFreeEntry = NULL;
MM_HeapLinkedFreeHeader* perviousLastFreeEntry = NULL;
MM_HeapLinkedFreeHeader* lastReservedFreeEntry = NULL;
uintptr_t expandedSize = expandSize;
J9ModronFreeList* reservedFreelist = getReservedFreeList();
J9ModronFreeList* lastFreelist = NULL;
/* this method only supports expand to higher address direction.
* attempt to Coalesce with the last reserved free entry first,
* it doesn't connect with reserved free entry, it may connect with the last free entry,
* if the newly created entry is bigger than VeryLargeObjectThreshold, move or append the entry into reserved freelist.
* otherwise append the entry into regular free list.
*/
if (NULL != reservedFreelist->_freeList) {
lastReservedFreeEntry = reservedFreelist->_freeList;
while (lastReservedFreeEntry->getNext(compressed)) {
lastReservedFreeEntry = lastReservedFreeEntry->getNext(compressed);
}
if (canCoalesce) {
expandedSize = coalesceExpandRangeWithLastFreeEntry(lastReservedFreeEntry, reservedFreelist, lowAddress, expandSize);
}
}
if (expandedSize == expandSize) {
uintptr_t index = _heapFreeListCount-1;
while ((NULL == _heapFreeLists[index]._freeList) && (0 != index)) {
index--;
}
lastFreelist = &_heapFreeLists[index];
if (NULL != lastFreelist->_freeList) {
lastFreeEntry = lastFreelist->_freeList;
while (lastFreeEntry->getNext(compressed)) {
perviousLastFreeEntry = lastFreeEntry;
lastFreeEntry = lastFreeEntry->getNext(compressed);
}
if (canCoalesce) {
expandedSize = coalesceExpandRangeWithLastFreeEntry(lastFreeEntry, lastFreelist, lowAddress, expandSize);
}
}
uintptr_t reservedFreeEntryThreshold = env->getExtensions()->largeObjectAllocationProfilingVeryLargeObjectThreshold;
if (reservedFreeEntryThreshold <= expandedSize) {
if (expandedSize != expandSize) {
/* move coalesced free entry to reserved freelist */
moveLastFreeEntryToReservedFreeList(env, lastFreelist, perviousLastFreeEntry, lastFreeEntry, reservedFreelist, lastReservedFreeEntry);
} else {
/* append to reserved freelist */
appendToFreeList(env, reservedFreelist, lastReservedFreeEntry, lowAddress, expandSize);
}
} else {
if (expandedSize == expandSize) {
/* append to regular freelist */
appendToFreeList(env, lastFreelist, lastFreeEntry, lowAddress, expandSize);
}
/* else stay in regular freelist */
}
}
/* else stay in reserved freelist */
assume0(isMemoryPoolValid(env, true));
}
/**
* Remove the range of memory to the free list of the receiver.
*
* @param expandSize Number of bytes to remove from the memory pool
* @param lowAddress Low address of memory to remove (inclusive)
* @param highAddress High address of memory to remove (non inclusive)
*
* @note The expectation is that the range consists ONLY of free elements (no live data appears).
*
*/
void*
MM_MemoryPoolHybrid::contractWithRange(MM_EnvironmentBase* env, uintptr_t contractSize, void* lowAddress, void* highAddress)
{
if (0 == contractSize) {
return NULL;
}
/* try contract in reserved freelist first, if can not find the range in reserved freellist, then try contract in the last freelist */
if (!tryContractWithRangeInFreelist(env, getReservedFreeList(), contractSize, lowAddress, highAddress)) {
uintptr_t index = _heapFreeListCount-1;
while ((NULL == _heapFreeLists[index]._freeList) && (0 != index)) {
index--;
}
J9ModronFreeList* freelist = &_heapFreeLists[index];
tryContractWithRangeInFreelist(env, freelist, contractSize, lowAddress, highAddress);
}
assume0(isMemoryPoolValid(env, true));
return lowAddress;
}
/**
* Add contents of an address ordered list of all free entries to this pool
*
* @param freeListHead Head of list of free entries to be added
* @param freeListTail Tail of list of free entries to be added
* @param freeListMemoryCount Number of free entries in the list
* @param freeListMemorySize Total size of free entries in the list
*
*/
void
MM_MemoryPoolHybrid::addFreeEntries(MM_EnvironmentBase* env,
MM_HeapLinkedFreeHeader*& freeListHead, MM_HeapLinkedFreeHeader*& freeListTail,
uintptr_t freeListMemoryCount, uintptr_t freeListMemorySize)
{
bool const compressed = compressObjectReferences();
uintptr_t reservedFreeEntryThreshold = env->getExtensions()->largeObjectAllocationProfilingVeryLargeObjectThreshold;
MM_HeapLinkedFreeHeader* currentFreeEntry =NULL;
MM_HeapLinkedFreeHeader* nextFreeEntry = freeListHead->getNext(compressed);
MM_HeapLinkedFreeHeader* lastFreeEntry = NULL;
MM_HeapLinkedFreeHeader* perviousLastFreeEntry = NULL;
J9ModronFreeList* lastFreelist = NULL;
MM_HeapLinkedFreeHeader* lastReservedFreeEntry = NULL;
J9ModronFreeList* reservedFreelist = getReservedFreeList();
uintptr_t expandSize = freeListHead->getSize();
uintptr_t expandedSize = expandSize;
uintptr_t index = _heapFreeListCount-1;
while ((NULL == _heapFreeLists[index]._freeList) && (0 != index)) {
index--;
}
lastFreelist = &_heapFreeLists[index];
if (NULL != lastFreelist->_freeList) {
lastFreeEntry = lastFreelist->_freeList;
while (lastFreeEntry->getNext(compressed)) {
perviousLastFreeEntry = lastFreeEntry;
lastFreeEntry = lastFreeEntry->getNext(compressed);
}
}
/* try to coalesce freeListHead with reservedFreelist first, then try to coalesce it with regular freelist,
* if the newly created entry or the rest of free entries is bigger than ReservedFreeEntryThreshold,
* move or append it into reserved freelist, otherwise into regular freelist.
*/
if (NULL != reservedFreelist->_freeList) {
lastReservedFreeEntry = reservedFreelist->_freeList;
while (lastReservedFreeEntry->getNext(compressed)) {
lastReservedFreeEntry = lastReservedFreeEntry->getNext(compressed);
}
expandedSize = coalesceNewFreeEntryWithLastFreeEntry(lastReservedFreeEntry, reservedFreelist, freeListHead);
}
if (expandedSize == expandSize) {
if (NULL != lastFreeEntry) {
expandedSize = coalesceNewFreeEntryWithLastFreeEntry(lastFreeEntry, lastFreelist, freeListHead);
}
if (reservedFreeEntryThreshold <= expandedSize) {
if (expandedSize != expandSize) {
/* move coalesced free entry to reserved freelist */
moveLastFreeEntryToReservedFreeList(env, lastFreelist, perviousLastFreeEntry, lastFreeEntry, reservedFreelist, lastReservedFreeEntry);
} else {
/* append to reserved freelist */
appendToFreeList(env, reservedFreelist, lastReservedFreeEntry, freeListHead);
lastReservedFreeEntry = freeListHead;
}
} else {
if (expandedSize == expandSize) {
/* append to regular freelist */
appendToFreeList(env, lastFreelist, lastFreeEntry, freeListHead);
lastFreeEntry = freeListHead;
}
/* else freelistHead will stay in regular freelist */
}
}
/* else freelistHead will stay in reserved freelist */
/* append the rest of freeEntries(except freelistHead) into reserved freelist or regular freelist */
while (NULL != nextFreeEntry) {
currentFreeEntry = nextFreeEntry;
nextFreeEntry = currentFreeEntry->getNext(compressed);
if (reservedFreeEntryThreshold <= currentFreeEntry->getSize()) {
appendToFreeList(env, reservedFreelist, lastReservedFreeEntry, currentFreeEntry);
lastReservedFreeEntry = currentFreeEntry;
} else {
appendToFreeList(env, lastFreelist, lastFreeEntry, currentFreeEntry);
lastFreeEntry = currentFreeEntry;
}
}
}
/**
* Remove all free entries in a specified range from pool and return to caller
* as an address ordered list.
*
* @param lowAddress Low address of memory to remove (inclusive)
* @param highAddress High address of memory to remove (non inclusive)
* @param minimumSize Minimum size of free entry we are interested in
* @param retListHead Head of list of free entries being returned
* @param retListTail Tail of list of free entries being returned
* @param retListMemoryCount Number of free chunks on returned list
* @param retListmemorySize Total size of all free chunks on returned list
*
* @return TRUE if at least one chunk in specified range found; FALSE otherwise
*/
bool
MM_MemoryPoolHybrid::removeFreeEntriesWithinRange(MM_EnvironmentBase* env, void* lowAddress, void* highAddress,
uintptr_t minimumSize,
MM_HeapLinkedFreeHeader*& retListHead, MM_HeapLinkedFreeHeader*& retListTail,
uintptr_t& retListMemoryCount, uintptr_t& retListMemorySize)
{
bool const compressed = compressObjectReferences();
bool ret = false;
void* currentFreeEntryTop = NULL;
void* baseAddr = NULL;
void* topAddr = NULL;
MM_HeapLinkedFreeHeader* currentFreeEntry = NULL;
MM_HeapLinkedFreeHeader* previousFreeEntry = NULL;
MM_HeapLinkedFreeHeader* nextFreeEntry = NULL;
MM_HeapLinkedFreeHeader* tailFreeEntry = NULL;
retListHead = NULL;
retListTail = NULL;
retListMemoryCount = 0;
retListMemorySize = 0;
/* remove any free entries(in regular freelists) with in range, append them to retList, then remove any reserved free entries, insert them into retList */
/* Find the first free entry, if any, within specified range */
uintptr_t currentFreeListIndex;
previousFreeEntry = NULL;
currentFreeEntry = (MM_HeapLinkedFreeHeader*)getFirstFreeStartingAddr(env, ¤tFreeListIndex);
while (currentFreeEntry) {
currentFreeEntryTop = (void*)currentFreeEntry->afterEnd();
/* Does this chunk fall within range ? */
if ((currentFreeEntry >= lowAddress) || (currentFreeEntryTop > lowAddress)) {
break;
}
previousFreeEntry = currentFreeEntry;
currentFreeEntry = (MM_HeapLinkedFreeHeader*)getNextFreeStartingAddr(env, currentFreeEntry, ¤tFreeListIndex);
if (NULL == previousFreeEntry->getNext(compressed)) {
previousFreeEntry = NULL;
}
}
if (NULL != currentFreeEntry) {
Assert_MM_true(currentFreeEntry < highAddress);
/* Remember the next free entry after the current one which we are going to consume at least part of */
uintptr_t nextFreeListIndex = currentFreeListIndex;
nextFreeEntry = (MM_HeapLinkedFreeHeader*)getNextFreeStartingAddr(env, currentFreeEntry, &nextFreeListIndex);
/* Assume for now we will remove this entire free entry from the pool */
Assert_MM_true(_heapFreeLists[currentFreeListIndex]._freeSize >= currentFreeEntry->getSize());
Assert_MM_true(_heapFreeLists[currentFreeListIndex]._freeCount > 0);
_heapFreeLists[currentFreeListIndex]._freeSize -= currentFreeEntry->getSize();
_heapFreeLists[currentFreeListIndex]._freeCount -= 1;
_largeObjectAllocateStats->decrementFreeEntrySizeClassStats(currentFreeEntry->getSize());
baseAddr = (void*)currentFreeEntry;
topAddr = currentFreeEntryTop;
/* Determine what to do with any leading bytes of the free entry that are not being returned */
if (currentFreeEntry < (MM_HeapLinkedFreeHeader*)lowAddress) {
/* Space at the head that is not being returned - is it a valid free entry? */