This is an Pytorch implementation of Autoencoding beyond pixels using a learned similarity metric(VAE/GAN) in Python.
Encoder + Decoder/Generator + Discriminator
Encoder + Decoder/Generator + Discriminator
class Discriminator
self.f4 = nn.Linear(256, 1)
def similarity(self, x):
....
return self.f4(self.dropout(h)) # no sigmoid at the end
X_sim = discriminator.similarity(x_tilde)
X_data = discriminator.similarity(data)
rec_loss = ((X_sim - X_data) ** 2).mean()
dec_loss = GAMMA * rec_loss - dis_loss
KLD = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
KLD /= BATCH_SIZE * 784
enc_loss = KLD + BETA * rec_loss
recon_loss = F.binary_cross_entropy(recon_data, FAKE_LABEL)
sample_loss = F.binary_cross_entropy(sample_data, FAKE_LABEL)
real_loss = F.binary_cross_entropy(real_data, REAL_LABEL)
dis_loss = recon_loss + sample_loss + real_loss
MNIST
Encoder | Decoder | Discriminator |
---|---|---|
784 * 1024, LeakyReLU | 20 * 1024, LeakyReLU | 784 * 1024, LeakyReLU |
1024 * 1024, LeakyReLU | 1024 * 1024, LeakyReLU | 1024 * 512, LeakyReLU |
1024 * 1024, LeakyReLU | 1024 * 1024, LeakyReLU | 512 * 256, LeakyReLU |
1024 * 20 | 1024 * 784, Tanh | 256 * 1, Sigmoid |
1-50 epochs: