Skip to content

R Package: Adaptively weighted group lasso for semiparametic quantile regression models

License

Notifications You must be signed in to change notification settings

egpivo/QuantRegGLasso

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

48 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

QuantRegGLasso: Adaptively Weighted Group Lasso for Semiparametric Quantile Regression Models

License R build status Code Coverage CRAN_Status_Badge Downloads (monthly) Downloads (total) BEJ

QuantRegGLasso is an R package designed for adaptively weighted group Lasso procedures in quantile regression. It excels in simultaneous variable selection and structure identification for varying coefficient quantile regression models and additive quantile regression models with ultra-high dimensional covariates.

Installation

You can install QuantRegGLasso using either of the following methods:

Install from CRAN

install.packages("QuantRegGLasso")

Install the Development Version from GitHub

remotes::install_github("egpivo/QuantRegGLasso")

Please Note:

  • Windows Users: Ensure that you have Rtools installed before proceeding with the installation.

  • Mac Users: You need Xcode Command Line Tools and should install the library gfortran. Follow these steps in the terminal:

    brew update
    brew install gcc

    For a detailed solution, refer to this link, or download and install the library gfortran to resolve the "ld: library not found for -lgfortran" error.

Authors

Maintainer

Wen-Ting Wang (GitHub)

Reference

Toshio Honda, Ching-Kang Ing, Wei-Ying Wu (2019). Adaptively weighted group Lasso for semiparametric quantile regression models.

This paper introduces the adaptively weighted group Lasso procedure and its application to semiparametric quantile regression models. The methodology is grounded in a strong sparsity condition, establishing selection consistency under certain weight conditions.

License

GPL (>= 2)

Citation

  • To cite package ‘QuantRegGLasso’ in publications use:
  Wang W, Wu W, Honda T, Ing C (2024). _QuantRegGLasso: Adaptively
  Weighted Group Lasso for Semiparametric Quantile Regression Models_.
  R package version 1.0.0,
  <https://CRAN.R-project.org/package=QuantRegGLasso>.
  • A BibTeX entry for LaTeX users is
  @Manual{,
    title = {QuantRegGLasso: Adaptively Weighted Group Lasso for Semiparametric Quantile
Regression Models},
    author = {Wen-Ting Wang and Wei-Ying Wu and Toshio Honda and Ching-Kang Ing},
    year = {2024},
    note = {R package version 1.0.0},
    url = {https://CRAN.R-project.org/package=QuantRegGLasso},
  }