Skip to content

ehp/RNNAutoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RNN Autoencoder

Simple RNN autoencoder example in PyTorch. Can be used as anomaly detection for timeline data.

Getting Started

These instructions will get you a copy of the project up and running on your local machine for development and testing purposes. See deployment for notes on how to deploy the project on a live system.

Prerequisites

Use python 3.x and libraries from requirements.txt file.

virtualenv --python /usr/bin/python3 venv
. ./venv/bin/activate
pip install -r requirements.txt

Training

Clone NAB git repo with datasets:

git clone https://github.com/numenta/NAB.git

And then start training:

python -m autoencoder.rnntrainer \
--train_file NAB/data/artificialNoAnomaly/art_daily_small_noise.csv \
--test_file NAB/data/artificialWithAnomaly/art_daily_jumpsup.csv

See rnntrainer.py file for more options and default values.

Authors

  • Petr Masopust - Initial work - EHP

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

RNN autoencoder example in PyTorch

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages