Methods for running simulations to calculate Voter Satisfaction Efficiency (VSE) of various voting systems in various conditions.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
docs SRV->Star (final??) Jul 2, 2018
test fix use of old internal test library: ImportError: No module named 't… Jan 13, 2017
.gitignore
.project
README.md Point to the docs; Rename README to README.md Feb 21, 2017
brochureVSE.svg
dataClasses.py
debugDump.py
ksMoreResults3.csv.zip
ksresults3.csv.zip
methods.py
mydecorators.py
newResults.txt
sodaTest.py Include Srv, KsModel; other updates Jan 7, 2017
stratFunctions.py
tenK.txt
tests.py
voterModels.py README: more tests; More doc; drop writeLn call Jan 16, 2017
vse.py
vseBrochure.svg SRV->Star Jul 2, 2018
vseCheck.R SRV->Star Jul 2, 2018

README.md

Voter Satisfaction Efficiency

These are some methods for running VSE (Voter Satisfaction Efficiency) simulations for various voting systems.

See Voter Satisfaction Efficiency for an explanation of the methods and results.

Installing the code

Requirements: python3, scipy, pydoc

Testing uses pydoc, which should make most things pretty self-documenting.

E.g.:

python3 -m doctest methods.py
python3 -m doctest voterModels.py
python3 -m doctest dataClasses.py
python3 vse.py

Running simulations

Try

$ python3
>>> csvs = CsvBatch(PolyaModel(), [[Score(), baseRuns], [Mav(), medianRuns]], nvot=5, ncand=4, niter=3)
>>> csvs.saveFile()

and look for the results in SimResults1.csv