Skip to content

Estimate Dirichlet parameters for network communities

Notifications You must be signed in to change notification settings

elplatt/communityprior

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Estimate SSN-LDA (1) Dirichlet parameters from node communities.

The estimation uses the MLE method described by (2) and implemented by (https://github.com/ericsuh/dirichlet).

The input csv should be comma separated with no spaces and a header row. All ids should be numeric and start at 0. The strength of a node's community membership (member_prob) should be a real number between 0 and 1. The format is:

node_id,community_id,member_prob

If the csv containing the community data is examples/example.csv, then the usage is:

python communityprior.py examples/example.csv alpha.csv beta.csv

Two files containing the priors, alpha.csv and beta.csv, will be written to the current directory.

References

  1. Zhang, H., Qiu, B., Giles, C. L., Foley, H. C., & Yen, J. (2007, May). An LDA-based community structure discovery approach for large-scale social networks. In Intelligence and Security Informatics, 2007 IEEE (pp. 200-207). IEEE.
  2. Minka, T. (2000). Estimating a Dirichlet distribution.

About

Estimate Dirichlet parameters for network communities

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages