Skip to content

Universal Dependency polarization for monotonicity based natural language inference

License

Notifications You must be signed in to change notification settings

eric11eca/Udep2Mono

Repository files navigation

Udep2Mono: Monotonicity Marking from Universal Dependency Trees

This framework provides an easy and accurate method to annotate monotonicity information (polarity arrows) on natural English sentences based on Universal Dependency parse trees.

The following publications are integrated in this framework:

Installation

The recoomanded environment include Python 3.6 or higher , Stanza v1.2.0 or higher, and **ImageMagick v7.0.11. The code does not work with Python 2.7.

Clone the repository

git clone https://github.com/eric11eca/Udep2Mono.git

Install from sources

pip install -r requirements.txt
python -m pip install --upgrade setuptools
python setup.py install

Getting Started

First download a pretrained model from Google Drive. Replace the Stanza defalut depparse model with this pretrained version. The Stanza model path is:

C:\Users\$your_user_name$\stanza_resources\en\

Then either open Udep2Mono.ipynb (recommanded) or run

python main.py

Pre-Trained UD Parser Models

We provide two UD Parser Models for English. Some models are general purpose models, while others produce embeddings for specific use cases. Pre-trained models can be loaded by just passing the model name: SentenceTransformer('model_name').

Training

For training new UD parser models, see Stanza's training dcumentation for an introduction how to train your own UD parser.

Citing & Authors

If you find this repository helpful, feel free to cite our publication Monotonicity Marking from Universal Dependency Trees:

@InProceedings{chen-gao:2021:IWCS,
  author    = {Chen, Zeming  and  Gao, Qiyue},
  title     = {Monotonicity Marking from Universal Dependency Trees},
  booktitle      = {Proceedings of the 14th International Conference on Computational Semantics (IWCS)},
  month          = {June},
  year           = {2021},
  address        = {Groningen, The Netherlands (online)},
  publisher      = {Association for Computational Linguistics},
  pages     = {121--131},
  url       = {https://www.aclweb.org/anthology/2021.iwcs-1.12}
}

Contact person: Zeming Chen, chenz16@rose-hulman.edu Don't hesitate to send us an e-mail or report an issue, if something is broken or if you have further questions.

This repository contains experimental software and is published for the sole purpose of giving additional background details on the respective publication.