First, we simply load the PyDaisi and supporting packages:
import pydaisi as pyd
from PIL import Image
Next, we connect to the Daisi:
yolo_object_detection = pyd.Daisi("erichare/YOLO v6 Object Detection")
Now, let's use this image of a busy street:
We simply load the Image and pass it to the Daisi:
img = Image.open("busystreet.png")
img.load()
yolo_result, labels_df = yolo_object_detection.yolo(img, return_type=["Image", "Labels"]).value
# Or, labels_df = yolo_object_detection.yolo(img, return_type=["Labels"]).value
And finally, let's render the result!
yolo_result.show()
Or, we can automate everything by just Running the Streamlit App
- YOLOv6 Code: YOLOv6 Code from meituan
- YOLOv6 Blog: Blog from DagsHub
- YOLOv6 NCNN Android app demo: ncnn-android-yolov6 from FeiGeChuanShu
- YOLOv6 ONNXRuntime/MNN/TNN C++: YOLOv6-ORT, YOLOv6-MNN and YOLOv6-TNN from DefTruth
- YOLOv6 TensorRT Python: yolov6-tensorrt-python from Linaom1214
- YOLOv6 TensorRT Windows C++: yolort from Wei Zeng