Skip to content

ericustc/face_verification_experiment

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Face Representation

Overview

This Deep Face Representation Experiment is based on Convolution Neural Network to learn a robust feature for face verification task. The popular deep learning framework caffe is used for training on CASIA-WebFace dataset and the feature extraction is realized by python code caffe_ftr.py.

Structure

code: data pre-processing and evaluation code.
model: caffemodel and solverstate.
proto: convolution network configuration.
results: LFW features.

Description

Data Pre-processing

1). Download CASIA-WebFace dataset which contains 493456 face images of 10575 identities.
2). All face images are converted to gray-scale images and normalized to 144x144 according to landmarks.
3). According to the 5 facial points, we not only rotate two eye points horizontally but also set the distance between the midpoint of eyes and the midpoint of mouth(ec_mc_y), and the y axis of midpoint of eyes(ec_y) .

Dataset size ec_mc_y ec_y
CASIA-WebFace 144x144 48 48
lfw 128x128 48 40

Training

1). The model is trained by open source deep learning framework caffe.
2). The network configuration is showed in "proto" file and the trained model is showed in "model" file.

Evaluation

1). The model is evaluated on LFW data set which is a popular data set for face verification task.
2). The feature extraction is used by python program caffe_ftr.py. The extracted features and lfw testing pairs are located in "results" file.
3). To evaluate the model, the matlab code or other ROC evaluation code can be used.

Results

The single convolution net testing is evaluated on unsupervised setting only computing cosine similarity for lfw pairs.

Dataset EER TPR@0.01 TPR@0.001 TPR@0
lfw 97.77% 94.80% 84.37% 43.17%

About

Face verification experiment for lfw

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • MATLAB 96.2%
  • Shell 3.8%