forked from k3s-io/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquantity.go
463 lines (411 loc) · 13.8 KB
/
quantity.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
/*
Copyright 2014 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package resource
import (
"errors"
"fmt"
"math/big"
"regexp"
"strings"
flag "github.com/spf13/pflag"
"speter.net/go/exp/math/dec/inf"
)
// Quantity is a fixed-point representation of a number.
// It provides convenient marshaling/unmarshaling in JSON and YAML,
// in addition to String() and Int64() accessors.
//
// The serialization format is:
//
// <quantity> ::= <signedNumber><suffix>
// (Note that <suffix> may be empty, from the "" case in <decimalSI>.)
// <digit> ::= 0 | 1 | ... | 9
// <digits> ::= <digit> | <digit><digits>
// <number> ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
// <sign> ::= "+" | "-"
// <signedNumber> ::= <number> | <sign><number>
// <suffix> ::= <binarySI> | <decimalExponent> | <decimalSI>
// <binarySI> ::= Ki | Mi | Gi | Ti | Pi | Ei
// (International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
// <decimalSI> ::= m | "" | k | M | G | T | P | E
// (Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
//
// No matter which of the three exponent forms is used, no quantity may represent
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
// places. Numbers larger or more precise will be capped or rounded up.
// (E.g.: 0.1m will rounded up to 1m.)
// This may be extended in the future if we require larger or smaller quantities.
//
// When a Quantity is parsed from a string, it will remember the type of suffix
// it had, and will use the same type again when it is serialized.
//
// Before serializing, Quantity will be put in "canonical form".
// This means that Exponent/suffix will be adjusted up or down (with a
// corresponding increase or decrease in Mantissa) such that:
// a. No precision is lost
// b. No fractional digits will be emitted
// c. The exponent (or suffix) is as large as possible.
// The sign will be omitted unless the number is negative.
//
// Examples:
// 1.5 will be serialized as "1500m"
// 1.5Gi will be serialized as "1536Mi"
//
// NOTE: We reserve the right to amend this canonical format, perhaps to
// allow 1.5 to be canonical.
// TODO: Remove above disclaimer after all bikeshedding about format is over,
// or after March 2015.
//
// Note that the quantity will NEVER be internally represented by a
// floating point number. That is the whole point of this exercise.
//
// Non-canonical values will still parse as long as they are well formed,
// but will be re-emitted in their canonical form. (So always use canonical
// form, or don't diff.)
//
// This format is intended to make it difficult to use these numbers without
// writing some sort of special handling code in the hopes that that will
// cause implementors to also use a fixed point implementation.
type Quantity struct {
// Amount is public, so you can manipulate it if the accessor
// functions are not sufficient.
Amount *inf.Dec
// Change Format at will. See the comment for Canonicalize for
// more details.
Format
}
// Format lists the three possible formattings of a quantity.
type Format string
const (
DecimalExponent = Format("DecimalExponent") // e.g., 12e6
BinarySI = Format("BinarySI") // e.g., 12Mi (12 * 2^20)
DecimalSI = Format("DecimalSI") // e.g., 12M (12 * 10^6)
)
// MustParse turns the given string into a quantity or panics; for tests
// or others cases where you know the string is valid.
func MustParse(str string) Quantity {
q, err := ParseQuantity(str)
if err != nil {
panic(fmt.Errorf("cannot parse '%v': %v", str, err))
}
return *q
}
const (
// splitREString is used to separate a number from its suffix; as such,
// this is overly permissive, but that's OK-- it will be checked later.
splitREString = "^([+-]?[0-9.]+)([eEimkKMGTP]*[-+]?[0-9]*)$"
)
var (
// splitRE is used to get the various parts of a number.
splitRE = regexp.MustCompile(splitREString)
// Errors that could happen while parsing a string.
ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'")
ErrNumeric = errors.New("unable to parse numeric part of quantity")
ErrSuffix = errors.New("unable to parse quantity's suffix")
// Commonly needed big.Int values-- treat as read only!
bigTen = big.NewInt(10)
bigZero = big.NewInt(0)
bigOne = big.NewInt(1)
bigThousand = big.NewInt(1000)
big1024 = big.NewInt(1024)
// Commonly needed inf.Dec values-- treat as read only!
decZero = inf.NewDec(0, 0)
decOne = inf.NewDec(1, 0)
decMinusOne = inf.NewDec(-1, 0)
decThousand = inf.NewDec(1000, 0)
dec1024 = inf.NewDec(1024, 0)
decMinus1024 = inf.NewDec(-1024, 0)
// Largest (in magnitude) number allowed.
maxAllowed = inf.NewDec((1<<63)-1, 0) // == max int64
// The maximum value we can represent milli-units for.
// Compare with the return value of Quantity.Value() to
// see if it's safe to use Quantity.MilliValue().
MaxMilliValue = int64(((1 << 63) - 1) / 1000)
)
// ParseQuantity turns str into a Quantity, or returns an error.
func ParseQuantity(str string) (*Quantity, error) {
parts := splitRE.FindStringSubmatch(strings.TrimSpace(str))
// regexp returns are entire match, followed by an entry for each () section.
if len(parts) != 3 {
return nil, ErrFormatWrong
}
amount := new(inf.Dec)
if _, ok := amount.SetString(parts[1]); !ok {
return nil, ErrNumeric
}
base, exponent, format, ok := quantitySuffixer.interpret(suffix(parts[2]))
if !ok {
return nil, ErrSuffix
}
// So that no one but us has to think about suffixes, remove it.
if base == 10 {
amount.SetScale(amount.Scale() + inf.Scale(-exponent))
} else if base == 2 {
// numericSuffix = 2 ** exponent
numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent))
ub := amount.UnscaledBig()
amount.SetUnscaledBig(ub.Mul(ub, numericSuffix))
}
// Cap at min/max bounds.
sign := amount.Sign()
if sign == -1 {
amount.Neg(amount)
}
// This rounds non-zero values up to the minimum representable
// value, under the theory that if you want some resources, you
// should get some resources, even if you asked for way too small
// of an amount.
// Arguably, this should be inf.RoundHalfUp (normal rounding), but
// that would have the side effect of rounding values < .5m to zero.
if v, ok := amount.Unscaled(); v != int64(0) || !ok {
amount.Round(amount, 3, inf.RoundUp)
}
// The max is just a simple cap.
if amount.Cmp(maxAllowed) > 0 {
amount.Set(maxAllowed)
}
if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 {
// This avoids rounding and hopefully confusion, too.
format = DecimalSI
}
if sign == -1 {
amount.Neg(amount)
}
return &Quantity{amount, format}, nil
}
// removeFactors divides in a loop; the return values have the property that
// d == result * factor ^ times
// d may be modified in place.
// If d == 0, then the return values will be (0, 0)
func removeFactors(d, factor *big.Int) (result *big.Int, times int) {
q := big.NewInt(0)
m := big.NewInt(0)
for d.Cmp(bigZero) != 0 {
q.DivMod(d, factor, m)
if m.Cmp(bigZero) != 0 {
break
}
times++
d, q = q, d
}
return d, times
}
// Canonicalize returns the canonical form of q and its suffix (see comment on Quantity).
//
// Note about BinarySI:
// * If q.Format is set to BinarySI and q.Amount represents a non-zero value between
// -1 and +1, it will be emitted as if q.Format were DecimalSI.
// * Otherwise, if q.Format is set to BinarySI, frational parts of q.Amount will be
// rounded up. (1.1i becomes 2i.)
func (q *Quantity) Canonicalize() (string, suffix) {
if q.Amount == nil {
return "0", ""
}
// zero is zero always
if q.Amount.Cmp(&inf.Dec{}) == 0 {
return "0", ""
}
format := q.Format
switch format {
case DecimalExponent, DecimalSI:
case BinarySI:
if q.Amount.Cmp(decMinus1024) > 0 && q.Amount.Cmp(dec1024) < 0 {
// This avoids rounding and hopefully confusion, too.
format = DecimalSI
} else {
tmp := &inf.Dec{}
tmp.Round(q.Amount, 0, inf.RoundUp)
if tmp.Cmp(q.Amount) != 0 {
// Don't lose precision-- show as DecimalSI
format = DecimalSI
}
}
default:
format = DecimalExponent
}
// TODO: If BinarySI formatting is requested but would cause rounding, upgrade to
// one of the other formats.
switch format {
case DecimalExponent, DecimalSI:
mantissa := q.Amount.UnscaledBig()
exponent := int(-q.Amount.Scale())
amount := big.NewInt(0).Set(mantissa)
// move all factors of 10 into the exponent for easy reasoning
amount, times := removeFactors(amount, bigTen)
exponent += times
// make sure exponent is a multiple of 3
for exponent%3 != 0 {
amount.Mul(amount, bigTen)
exponent--
}
suffix, _ := quantitySuffixer.construct(10, exponent, format)
number := amount.String()
return number, suffix
case BinarySI:
tmp := &inf.Dec{}
tmp.Round(q.Amount, 0, inf.RoundUp)
amount, exponent := removeFactors(tmp.UnscaledBig(), big1024)
suffix, _ := quantitySuffixer.construct(2, exponent*10, format)
number := amount.String()
return number, suffix
}
return "0", ""
}
// String formats the Quantity as a string.
func (q *Quantity) String() string {
number, suffix := q.Canonicalize()
return number + string(suffix)
}
// Cmp compares q and y and returns:
//
// -1 if q < y
// 0 if q == y
// +1 if q > y
//
func (q *Quantity) Cmp(y Quantity) int {
num1 := q.Value()
num2 := y.Value()
if num1 < MaxMilliValue && num2 < MaxMilliValue {
num1 = q.MilliValue()
num2 = y.MilliValue()
}
if num1 < num2 {
return -1
} else if num1 > num2 {
return 1
}
return 0
}
func (q *Quantity) Add(y Quantity) error {
q.Amount.Add(q.Amount, y.Amount)
return nil
}
func (q *Quantity) Sub(y Quantity) error {
if q.Format != y.Format {
return fmt.Errorf("format mismatch: %v vs. %v", q.Format, y.Format)
}
q.Amount.Sub(q.Amount, y.Amount)
return nil
}
// MarshalJSON implements the json.Marshaller interface.
func (q Quantity) MarshalJSON() ([]byte, error) {
return []byte(`"` + q.String() + `"`), nil
}
// UnmarshalJSON implements the json.Unmarshaller interface.
func (q *Quantity) UnmarshalJSON(value []byte) error {
str := string(value)
parsed, err := ParseQuantity(strings.Trim(str, `"`))
if err != nil {
return err
}
// This copy is safe because parsed will not be referred to again.
*q = *parsed
return nil
}
// NewQuantity returns a new Quantity representing the given
// value in the given format.
func NewQuantity(value int64, format Format) *Quantity {
return &Quantity{
Amount: inf.NewDec(value, 0),
Format: format,
}
}
// NewMilliQuantity returns a new Quantity representing the given
// value * 1/1000 in the given format. Note that BinarySI formatting
// will round fractional values, and will be changed to DecimalSI for
// values x where (-1 < x < 1) && (x != 0).
func NewMilliQuantity(value int64, format Format) *Quantity {
return &Quantity{
Amount: inf.NewDec(value, 3),
Format: format,
}
}
// Value returns the value of q; any fractional part will be lost.
func (q *Quantity) Value() int64 {
if q.Amount == nil {
return 0
}
tmp := &inf.Dec{}
return tmp.Round(q.Amount, 0, inf.RoundUp).UnscaledBig().Int64()
}
// MilliValue returns the value of q * 1000; this could overflow an int64;
// if that's a concern, call Value() first to verify the number is small enough.
func (q *Quantity) MilliValue() int64 {
if q.Amount == nil {
return 0
}
tmp := &inf.Dec{}
return tmp.Round(tmp.Mul(q.Amount, decThousand), 0, inf.RoundUp).UnscaledBig().Int64()
}
// Set sets q's value to be value.
func (q *Quantity) Set(value int64) {
if q.Amount == nil {
q.Amount = &inf.Dec{}
}
q.Amount.SetUnscaled(value)
q.Amount.SetScale(0)
}
// SetMilli sets q's value to be value * 1/1000.
func (q *Quantity) SetMilli(value int64) {
if q.Amount == nil {
q.Amount = &inf.Dec{}
}
q.Amount.SetUnscaled(value)
q.Amount.SetScale(3)
}
// Copy is a convenience function that makes a deep copy for you. Non-deep
// copies of quantities share pointers and you will regret that.
func (q *Quantity) Copy() *Quantity {
if q.Amount == nil {
return NewQuantity(0, q.Format)
}
tmp := &inf.Dec{}
return &Quantity{
Amount: tmp.Set(q.Amount),
Format: q.Format,
}
}
// qFlag is a helper type for the Flag function
type qFlag struct {
dest *Quantity
}
// Sets the value of the internal Quantity. (used by flag & pflag)
func (qf qFlag) Set(val string) error {
q, err := ParseQuantity(val)
if err != nil {
return err
}
// This copy is OK because q will not be referenced again.
*qf.dest = *q
return nil
}
// Converts the value of the internal Quantity to a string. (used by flag & pflag)
func (qf qFlag) String() string {
return qf.dest.String()
}
// States the type of flag this is (Quantity). (used by pflag)
func (qf qFlag) Type() string {
return "quantity"
}
// QuantityFlag is a helper that makes a quantity flag (using standard flag package).
// Will panic if defaultValue is not a valid quantity.
func QuantityFlag(flagName, defaultValue, description string) *Quantity {
q := MustParse(defaultValue)
flag.Var(NewQuantityFlagValue(&q), flagName, description)
return &q
}
// NewQuantityFlagValue returns an object that can be used to back a flag,
// pointing at the given Quantity variable.
func NewQuantityFlagValue(q *Quantity) flag.Value {
return qFlag{q}
}