Skip to content

ersilia-os/eos4avb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Molecular representation learning

Representation Learning Framework that utilizes molecule images for encoding molecular inputs as machine readable vectors for downstream tasks such as bio-activity prediction, drug metabolism analysis, or drug toxicity prediction. The approach utilizes transfer learning, that is, pre-training the model on massive unlabeled datasets to help it in generalizing feature extraction and then fine tuning on specific tasks.

Identifiers

  • EOS model ID: eos4avb
  • Slug: image-mol-embeddings

Characteristics

  • Input: Compound
  • Input Shape: Single
  • Task: Representation
  • Output: Descriptor
  • Output Type: Float
  • Output Shape: Matrix
  • Interpretation: ImageMol embeddings of shape [1512] reshaped as a Numpy 1D array before serializing. These embeddings can be used as the input features of a fully connected classification or regression layer in a neural network.

References

Ersilia model URLs

Citation

If you use this model, please cite the original authors of the model and the Ersilia Model Hub.

License

This package is licensed under a GPL-3.0 license. The model contained within this package is licensed under a MIT license.

Notice: Ersilia grants access to these models 'as is' provided by the original authors, please refer to the original code repository and/or publication if you use the model in your research.

About Us

The Ersilia Open Source Initiative is a Non Profit Organization (1192266) with the mission is to equip labs, universities and clinics in LMIC with AI/ML tools for infectious disease research.

Help us achieve our mission!

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •