Full port of LIBSVM in the Go programming language
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
cmds
LICENSE
Makefile
NOTICE
README.md
cache.go
correlation.go
kernel.go
make.bat
model.go
modelio.go
parallel.go
parameter.go
predictor.go
probability.go
problem.go
qmatrix.go
solver.go
trainer.go
utility.go
wss.go
xvalidation.go

README.md

libsvm-go: Support Vector Machine

This is a full port of LIBSVM in the Go programming language. LIBSVM is a suite of tools and an API library for support vector classification, regression, and distribution estimation. This port implements the libsvm library in the form of a Go package called libSvm. It also implements the svm-train and svm-predict command line tools.

This port has no external package dependencies, and uses only the native standard library.

Installation

go get github.com/ewalker544/libsvm-go
make

Compatibility Notes

I have tried to make the Go implementation of svm-train and svm-predict plug-in compatibile with the original LIBSVM 3.18 distribution. This is to allow you to use the other tools available in the original distribution, like easy.py and grid.py.

svm-predict should be 100% plug-in compatibile. However, svm-train is plug-in compatible with one exception. The exception is the parameter weight flag used in the command. In this implementation, the flag is

-w i,weight : set the parameter C of class i to weight*C, for C-SVC (default 1)

For full documentation of the svm-train and svm-predict commands, please refer to the original LIBSVM web site.

API Example

Training

import "github.com/ewalker544/libsvm-go"
    
param := libSvm.NewParameter()      // Create a parameter object with default values
param.KernelType = libSvm.POLY      // Use the polynomial kernel
    
model := libSvm.NewModel(param)     // Create a model object from the parameter attributes
    
// Create a problem specification from the training data and parameter attributes
problem, err := libSvm.NewProblem("a9a.train", param) 
    
model.Train(problem)                // Train the model from the problem specification
    
model.Dump("a9a.model")             // Dump the model into a user-specified file

Predicting

import "github.com/ewalker544/libsvm-go"
    
// Create a model object from the model file generated from training
model := libSvm.NewModelFromFile("a9a.model")  
    
x := make(map[int]float64)
// Populate x with the test vector
    
predictLabel := model.Predict(x)    // Predicts a float64 label given the test vector