-
Notifications
You must be signed in to change notification settings - Fork 53
/
RigSimulator.cpp
778 lines (705 loc) · 28.4 KB
/
RigSimulator.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <algorithm>
#include <cstdlib>
#include <fstream>
#include <functional>
#include <string>
#include <thread>
#include <vector>
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <folly/Format.h>
#include "source/render/BoundingVolumeHierarchy.h"
#include "source/render/PerlinNoise.h"
#include "source/render/RaytracingPrimitives.h"
#include "source/util/Camera.h"
#include "source/util/CvUtil.h"
#include "source/util/MathUtil.h"
#include "source/util/SystemUtil.h"
using namespace fb360_dep;
using namespace fb360_dep::cv_util;
using namespace fb360_dep::math_util;
using namespace fb360_dep::render;
using namespace fb360_dep::system_util;
const std::string kUsageMessage = R"(
- Render an artificial scene as seen by the specified rig.
- Example:
./RigSimulator \
--mode=pinhole_ring \
--skybox_path=/path/to/skybox.png
)";
DEFINE_int32(
anti_alias_supersample,
1,
"1 = no supersampling, 2 or higher = anti-alias supersampling");
DEFINE_double(ceiling_depth, 0, "depth of ceiling texture (m)");
DEFINE_string(ceiling_path, "", "path to image to use for ceiling");
DEFINE_double(ceiling_position, 0, "how far up the ceiling is (m)");
DEFINE_double(ceiling_width, 0, "width of ceiling texture (m)");
DEFINE_string(
dest_cam_images,
"",
"path to directory to write camera images for multi-camera rigs");
DEFINE_string(dest_left, "", "path to left-eye image");
DEFINE_string(dest_mono, "", "path to mono image");
DEFINE_string(dest_mono_depth, "", "path to mono 1/depthmap (intensity = 1 / depth in meters)");
DEFINE_string(dest_right, "", "path to right-eye image");
DEFINE_string(dest_stereo, "", "path to right-eye image");
DEFINE_int32(eqr_height, 1540, "height of equirect output");
DEFINE_int32(eqr_width, 3080, "width of equirect output");
DEFINE_int32(ftheta_height, 400, "height of ftheta camera output");
DEFINE_double(
ftheta_image_circle_fov,
166.667,
"ftheta FOV, i.e. number of degrees spanned at the image circle");
DEFINE_int32(
ftheta_image_circle_radius,
250,
"image circle radius corresponding to specified ftheta FOV");
DEFINE_int32(ftheta_width, 300, "width of ftheta camera output");
DEFINE_double(
ground_plane_dist_m,
1.70,
"for 'ground_plane' scene, distance from camera to ground");
DEFINE_double(interpupillary_radius, 3.2, "half distance between eyes");
DEFINE_bool(
marble,
false,
"if true, adds a marble (perlin noise) texture to the objects in the scene");
DEFINE_double(marble_scale, 0.1, "scale applied to marble texture");
DEFINE_double(
max_icosahedron_dist,
250,
"maximum distance from origin that a randomly generated icosahedron can spawn");
DEFINE_double(max_icosahedron_radius, 50, "max radius of a randomly generated icosahedron");
DEFINE_double(
min_icosahedron_dist,
100,
"minimum distance from a center of camera to the closest point on a randomly generated icosahedron");
DEFINE_double(min_icosahedron_radius, 20, "min radius of a randomly generated icosahedron");
DEFINE_string(
mode,
"",
"mono_eqr,stereo_eqr,pinhole_ring,ftheta_ring,dodecahedron,icosahedron,rig_from_json (required)");
DEFINE_double(
noise_amplitude,
0.0,
"amount of noise to be added to pixels (to simulate real camera noise). pixel intensities are scaled in 0...255");
DEFINE_int32(num_cams_in_ring, 14, "number of cameras in simulated rings of cameras");
DEFINE_int32(num_random_icosahedrons, 250, "number of icosahedrons to generate");
DEFINE_double(
pinhole_aspect_ratio,
1.0,
"aspect ratio of pinhole lens = horizontal fov / vertical fov");
DEFINE_double(pinhole_fov_horizontal, 77.7, "horizontal FOV of pinhole lens (degrees)");
DEFINE_int32(pinhole_height, 512, "height of pinhole camera output");
DEFINE_int32(pinhole_width, 512, "width of pinhole camera output");
DEFINE_bool(red_triangle, false, "add a red triangle at (0,0)");
DEFINE_string(rig_in, "", "path to read json rig file if mode = rig_from_json");
DEFINE_string(rig_out, "", "path to write json description of multi-camera rig");
DEFINE_double(
rig_radius,
0.218,
"radius of the rig/sphere of cameras (m). distance from center to lens exit pupil.");
DEFINE_string(scene, "icosahedron", "scene to draw: 'icosahedron', 'cube', 'ground_plane'");
DEFINE_string(skybox_path, "res/skybox.jpg", "path to image to use as background/skybox");
DEFINE_double(top_cam_vertical_offset, 13.0, "distance from center plane to top camera");
namespace icosahedron_data {
const static float X = 0.525731112119133696;
const static float Z = 0.850650808352039932;
const static float icosahedronVertex[12][3] = {
{-X, 0.0, Z},
{X, 0.0, Z},
{-X, 0.0, -Z},
{X, 0.0, -Z},
{0.0, Z, X},
{0.0, Z, -X},
{0.0, -Z, X},
{0.0, -Z, -X},
{Z, X, 0.0},
{-Z, X, 0.0},
{Z, -X, 0.0},
{-Z, -X, 0.0}};
const static int icosahedronTriangle[20][3] = {
{1, 4, 0}, {4, 9, 0}, {4, 5, 9}, {8, 5, 4}, {1, 8, 4}, {1, 10, 8}, {10, 3, 8},
{8, 3, 5}, {3, 2, 5}, {3, 7, 2}, {3, 10, 7}, {10, 6, 7}, {6, 11, 7}, {6, 0, 11},
{6, 1, 0}, {10, 1, 6}, {11, 0, 9}, {2, 11, 9}, {5, 2, 9}, {11, 2, 7}};
}; // namespace icosahedron_data
void makeIcosahedron(
std::vector<Triangle>& triangles,
const cv::Vec3f& center,
const float& radius) {
using namespace icosahedron_data;
const cv::Vec3f color =
center[2] > 0 ? cv::Vec3f(0, 1, 0) : cv::Vec3f(randf0to1(), randf0to1(), randf0to1());
for (int i = 0; i < 20; ++i) {
const int v1i = icosahedronTriangle[i][0];
const int v2i = icosahedronTriangle[i][1];
const int v3i = icosahedronTriangle[i][2];
const cv::Vec3f v1(
icosahedronVertex[v1i][0], icosahedronVertex[v1i][1], icosahedronVertex[v1i][2]);
const cv::Vec3f v2(
icosahedronVertex[v2i][0], icosahedronVertex[v2i][1], icosahedronVertex[v2i][2]);
const cv::Vec3f v3(
icosahedronVertex[v3i][0], icosahedronVertex[v3i][1], icosahedronVertex[v3i][2]);
triangles.push_back(
Triangle(v1 * radius + center, v2 * radius + center, v3 * radius + center, color));
}
}
RayIntersectionResult raytraceBVH(const Ray& ray, const BoundingVolumeHierarchy& bvh) {
RayIntersectionResult closestIntersection(false, FLT_MAX, -1);
// if the ray misses the bvh, it misses everything
if (!rayIntersectSphereYesNo(ray, bvh.sphere)) {
return closestIntersection;
}
if (bvh.isLeaf) { // if its a leaf, do intersection with triangles in the leaf
for (int i = 0; i < int(bvh.leafTriangles.size()); ++i) {
RayIntersectionResult triResult = rayIntersectTriangle(ray, bvh.leafTriangles[i]);
if (triResult.hit && triResult.dist < closestIntersection.dist) {
closestIntersection = triResult;
}
}
} else { // if not a leaf, do intersection with child bvh's
for (int i = 0; i < int(bvh.children.size()); ++i) {
RayIntersectionResult childResult = raytraceBVH(ray, bvh.children[i]);
if (childResult.hit && childResult.dist < closestIntersection.dist) {
closestIntersection = childResult;
}
}
}
return closestIntersection;
}
// returns BGR-D (D=depth)
cv::Vec4f traceRayToGetColor(
const Ray& ray,
const std::vector<Triangle>& triangles,
const BoundingVolumeHierarchy& bvh,
const cv::Mat_<cv::Vec3b>& skybox) {
// intersect with geometry in bvh
RayIntersectionResult intersectionResult = raytraceBVH(ray, bvh);
// intersect with a textured rectangle above the rig
if (!FLAGS_ceiling_path.empty()) {
// solve r(depth).z = ceiling_position <=>
const float depth = (FLAGS_ceiling_position - ray.origin[2]) / ray.dir[2];
if (0 < depth && depth < intersectionResult.dist) {
cv::Vec3f p = ray.origin + depth * ray.dir;
float s = p[0] / FLAGS_ceiling_width + 0.5;
float t = p[1] / FLAGS_ceiling_depth + 0.5;
if (0 <= s && s < 1 && 0 <= t && t < 1) {
// ceiling is hit, return the color
static cv::Mat_<cv::Vec3b> ceiling =
cv_util::imreadExceptionOnFail(FLAGS_ceiling_path, cv::IMREAD_COLOR);
cv::Vec3f color = ceiling(t * ceiling.rows, s * ceiling.cols);
return cv::Vec4f(color[0] / 255, color[1] / 255, color[2] / 255, depth);
}
}
}
// if nothing else was hit, intersect with sky equirect
if (!intersectionResult.hit) {
const float phi = acos(math_util::clamp(
ray.dir[2], -1.0f, 1.0f)); // the min here is to avoid a nan.. other numerics can result in
// a value that is epsilon > 1.0 being passed here
const float theta = M_PI + atan2(ray.dir[1], ray.dir[0]);
const float sampleX = (theta / (2.0 * M_PI)) * skybox.cols;
const float sampleY = (phi / M_PI) * skybox.rows;
const cv::Vec3b skyColor =
skybox(std::min(int(sampleY), skybox.rows - 1), int(sampleX) % skybox.cols);
return cv::Vec4f(
skyColor[0] / 255.0f,
skyColor[1] / 255.0f,
skyColor[2] / 255.0f,
std::numeric_limits<float>::max());
}
assert(
intersectionResult.hitObjectIdx >=
0); // if this fails, we probably forgot to bind the triangle indices in Triangle::selfIdx
cv::Vec3f baseColor = triangles[intersectionResult.hitObjectIdx].color;
const cv::Vec3f& normal = triangles[intersectionResult.hitObjectIdx].normal;
const cv::Vec3f intersectionPoint = ray.origin + intersectionResult.dist * ray.dir;
if (FLAGS_marble) {
baseColor *= 0.7f +
0.3f *
std::fabs(perlin_noise::pnoise(
FLAGS_marble_scale * intersectionPoint[0],
FLAGS_marble_scale * intersectionPoint[1],
FLAGS_marble_scale * intersectionPoint[2]));
}
const static cv::Vec3f kLightPos(2.0f, 1.0f, 5.2f);
cv::Vec3f lightDir = kLightPos - intersectionPoint;
lightDir /= norm(lightDir);
const float lightCoef = .25f + .75f * std::max(0.0f, normal.dot(lightDir));
const cv::Vec3f shadedColor = baseColor * lightCoef;
return cv::Vec4f(shadedColor[0], shadedColor[1], shadedColor[2], intersectionResult.dist);
}
void makeIcosahedronScene(std::vector<Triangle>& triangles) {
for (int i = 0; i < FLAGS_num_random_icosahedrons; ++i) {
const float minAllowedCenterDist = FLAGS_min_icosahedron_dist + FLAGS_max_icosahedron_radius;
cv::Vec3f center;
do {
center = cv::Vec3f(
2.0f * (randf0to1() - 0.5) * FLAGS_max_icosahedron_dist,
2.0f * (randf0to1() - 0.5) * FLAGS_max_icosahedron_dist,
2.0f * (randf0to1() - 0.5) * FLAGS_max_icosahedron_dist);
} while (norm(center) < minAllowedCenterDist);
const float radiusRange = FLAGS_max_icosahedron_radius - FLAGS_min_icosahedron_radius;
const float icosahedronRadius = FLAGS_min_icosahedron_radius + randf0to1() * radiusRange;
makeIcosahedron(triangles, center, icosahedronRadius);
}
if (FLAGS_red_triangle) {
float kDepth = FLAGS_min_icosahedron_dist;
float kSide = 0.1f * kDepth;
triangles.push_back(Triangle(
cv::Vec3f(kDepth, 0, 0),
cv::Vec3f(kDepth, 0, kSide),
cv::Vec3f(kDepth, kSide, 0),
cv::Vec3f(0, 0, 1)));
}
}
void makeCubesScene(std::vector<Triangle>& triangles) {
static const std::vector<cv::Vec3f> kCubeVertices = {
{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}};
static const std::vector<cv::Vec3i> kCubeTriangleIndices = {
{2, 0, 1},
{1, 3, 2},
{6, 2, 0},
{0, 4, 6},
{4, 0, 1},
{1, 5, 4},
{3, 1, 5},
{5, 7, 3},
{7, 3, 2},
{2, 6, 7},
{5, 4, 6},
{6, 7, 5}};
for (int triangle = 0; triangle < int(kCubeTriangleIndices.size()); ++triangle) {
cv::Vec3f vertices[3];
for (int vertex = 0; vertex < 3; ++vertex) {
vertices[vertex] = kCubeVertices[kCubeTriangleIndices[triangle][vertex]];
}
// Scales and offsets are chosen to place one cube straight ahead, and one
// smaller cube offset from centered.
static const std::vector<float> kScales = {2, 1};
static const std::vector<cv::Vec3f> kOffsets = {{0, 0, -25}, {5, 2, -20}};
static const cv::Vec3f kCenterShift(-0.5, -0.5, -0.5);
static const std::vector<std::vector<cv::Vec3f>> kColors = {
// Red Green Yellow Blue Magenta Cyan
{{0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}},
// Teal Purple White Orange Salmon
{{0.5, 1, 0},
{1, 0, 0.5},
{1, 1, 1},
{0, 0.5, 1},
{0.5, 0.5, 1},
// Black
{0, 0, 0}}};
const int numCubes = int(kScales.size());
CHECK_EQ(numCubes, int(kOffsets.size()));
CHECK_EQ(numCubes, int(kColors.size()));
for (int cube = 0; cube < numCubes; ++cube) {
triangles.push_back(Triangle(
kScales[cube] * (vertices[0] + kCenterShift) + kOffsets[cube],
kScales[cube] * (vertices[1] + kCenterShift) + kOffsets[cube],
kScales[cube] * (vertices[2] + kCenterShift) + kOffsets[cube],
kColors[cube][triangle / 2]));
}
}
}
void makeGroundPlaneScene(std::vector<Triangle>& triangles) {
static const float kR = 100.0f; // 100 meters
const float z = -FLAGS_ground_plane_dist_m;
static const std::vector<cv::Vec3f> vertices = {
{-kR, -kR, z},
{+kR, -kR, z},
{+kR, +kR, z},
{-kR, +kR, z},
};
const cv::Vec3f red(0, 0, 1);
triangles.push_back(Triangle(vertices[0], vertices[1], vertices[2], red));
triangles.push_back(Triangle(vertices[3], vertices[0], vertices[2], red));
}
std::vector<Camera> ringOfClones(const Camera& camera, int count, double radius) {
std::vector<Camera> result(count, camera);
for (int i = 0; i < count; ++i) {
// the negative sign on theta here is so the camera array goes clockwise
const double theta = -2.0 * M_PI * double(i) / double(count);
Camera& clone = result[i];
clone.setRotation(Camera::Vector3(cos(theta), sin(theta), 0), Camera::Vector3::UnitZ());
clone.position = radius * clone.forward();
clone.id = std::to_string(i);
clone.group = "side camera";
}
return result;
}
std::vector<Camera> makeHorizontalRingOfPinholeCameras(
const int numCameras,
const float cameraArrayRadius,
const int pixelWidth,
const int pixelHeight,
const float fovHorizontalDegrees,
const float aspectRatioWoverH) {
const float tanHalfFov = std::tan(toRadians(fovHorizontalDegrees) / 2);
const Camera::Vector2 focal(
(pixelWidth / 2.0) / tanHalfFov, (pixelHeight / 2.0) / (tanHalfFov / aspectRatioWoverH));
const Camera generic(Camera::Type::RECTILINEAR, Camera::Vector2(pixelWidth, pixelHeight), focal);
return ringOfClones(generic, numCameras, cameraArrayRadius);
}
Camera makeGenericFTheta(
const int pixelWidth,
const int pixelHeight,
const int imageCircleRadius,
const float circleFov) {
return Camera(
Camera::Type::FTHETA,
Camera::Vector2(pixelWidth, pixelHeight),
2 * imageCircleRadius / toRadians(circleFov) * Camera::Vector2(1, 1));
}
void addTopCamera(
Camera::Rig& rig,
const int pixelWidth,
const int pixelHeight,
const int imageCircleRadius,
const float circleFov) {
Camera top = makeGenericFTheta(pixelWidth, pixelHeight, imageCircleRadius, circleFov);
top.position = Camera::Vector3(0, 0, FLAGS_top_cam_vertical_offset);
top.setRotation(Camera::Vector3(0, 0, 1), Camera::Vector3(1, 0, 0));
top.id = std::to_string(rig.size());
rig.push_back(top);
}
std::vector<Camera> makeHorizontalRingOfFThetaCameras(
const int numCameras,
const float cameraArrayRadius,
const int pixelWidth,
const int pixelHeight,
const int imageCircleRadius,
const float circleFov) {
Camera generic = makeGenericFTheta(pixelWidth, pixelHeight, imageCircleRadius, circleFov);
return ringOfClones(generic, numCameras, cameraArrayRadius);
}
// place an ftheta camera on a sphere of some specified radius and pointing
// forward in the direction of the sphere normal.
Camera makeFThetaCameraOnSphere(
const float /*sphereRadius*/,
const Camera::Vector3& normal,
const int pixelWidth,
const int pixelHeight,
const int imageCircleRadius,
const float circleFov,
const std::string& id) {
const Camera::Vector3 worldUp(0, 0, 1);
Camera camera = makeGenericFTheta(pixelWidth, pixelHeight, imageCircleRadius, circleFov);
camera.position = imageCircleRadius * normal;
Camera::Vector3 right = normal.cross(worldUp).normalized();
camera.setRotation(normal, normal.cross(-right));
camera.id = id;
return camera;
}
Camera::Vector3 icosaVert(const int index) {
const float(&v)[3] = icosahedron_data::icosahedronVertex[index];
return Eigen::Map<const Eigen::Vector3f>(v).cast<Camera::Real>();
}
std::vector<Camera> makeDodecahedronOfFThetaCameras(
const float cameraSphereRadius,
const int pixelWidth,
const int pixelHeight,
const int imageCircleRadius,
const float circleFov) {
std::vector<Camera> cameras;
for (int i = 0; i < int(ARRAY_SIZE(icosahedron_data::icosahedronVertex)); ++i) {
cameras.emplace_back(makeFThetaCameraOnSphere(
cameraSphereRadius,
icosaVert(i),
pixelWidth,
pixelHeight,
imageCircleRadius,
circleFov,
std::to_string(cameras.size())));
}
return cameras;
}
std::vector<Camera> makeIcosahedronOfFThetaCameras(
const float cameraSphereRadius,
const int pixelWidth,
const int pixelHeight,
const int imageCircleRadius,
const float circleFov) {
std::vector<Camera> cameras;
for (const auto& indexes : icosahedron_data::icosahedronTriangle) {
Camera::Vector3 midpoint =
(icosaVert(indexes[0]) + icosaVert(indexes[1]) + icosaVert(indexes[2])).normalized();
cameras.emplace_back(makeFThetaCameraOnSphere(
cameraSphereRadius,
midpoint,
pixelWidth,
pixelHeight,
imageCircleRadius,
circleFov,
std::to_string(cameras.size())));
}
return cameras;
}
// assumes a cv::Mat of Vec3f
void corruptImageWithNoise(cv::Mat_<cv::Vec3f>& image) {
const float a = FLAGS_noise_amplitude;
if (a == 0.0f) {
return;
}
for (int y = 0; y < image.rows; ++y) {
for (int x = 0; x < image.cols; ++x) {
const cv::Vec3f origColor = image(y, x);
image(y, x) = cv::Vec3f(
math_util::clamp<float>(origColor[0] + 2.0f * a * (randf0to1() - 0.5f), 0, 255.0f),
math_util::clamp<float>(origColor[1] + 2.0f * a * (randf0to1() - 0.5f), 0, 255.0f),
math_util::clamp<float>(origColor[2] + 2.0f * a * (randf0to1() - 0.5f), 0, 255.0f));
}
}
}
template <typename T>
cv::Mat_<T> downscale(const cv::Mat_<T>& src, int factor) {
CHECK_EQ(0, src.cols % factor) << src.cols << factor;
CHECK_EQ(0, src.rows % factor) << src.rows << factor;
cv::Mat_<T> dst;
resize(src, dst, cv::Size(src.cols / factor, src.rows / factor), 0, 0, cv::INTER_AREA);
return dst;
}
// return (rgb, 1/depth) as Mat
std::pair<cv::Mat_<cv::Vec3f>, cv::Mat_<float>> renderMonoEquirect(
const std::vector<Triangle>& triangles,
const BoundingVolumeHierarchy& bvh,
const int w,
const int h,
const cv::Mat_<cv::Vec3b>& skybox) {
const int aas = FLAGS_anti_alias_supersample;
cv::Mat_<cv::Vec3f> eqrImage(cv::Size(w * aas, h * aas));
cv::Mat_<float> eqrInvDepth(cv::Size(w * aas, h * aas));
for (int y = 0; y < eqrImage.rows; ++y) {
if (y % 100 == 0) {
LOG(INFO) << y;
}
for (int x = 0; x < eqrImage.cols; ++x) {
// theta increases counterclockwise, but x increases clockwise, hence the
// (1 - x/w) term in the equation for theta below.
const float theta = 2.0f * M_PI * (1.0f - (x + 0.5f) / float(eqrImage.cols));
const float phi = M_PI * (y + 0.5f) / float(eqrImage.rows);
const cv::Vec3f rayOrigin = cv::Vec3f(0.0, 0.0, 0.0);
const cv::Vec3f rayDir = cv::Vec3f(sin(phi) * cos(theta), sin(phi) * sin(theta), cos(phi));
const Ray ray(rayOrigin, rayDir);
const cv::Vec4f rgbd = traceRayToGetColor(ray, triangles, bvh, skybox);
eqrImage(y, x) = 255.0f * head3(rgbd);
eqrInvDepth(y, x) = math_util::clamp(1.0f / rgbd[3], 0.0f, 1.0f);
}
}
return std::make_pair(downscale(eqrImage, aas), downscale(eqrInvDepth, aas));
}
std::pair<cv::Mat_<cv::Vec3f>, cv::Mat_<cv::Vec3f>> renderStereoEquirect(
const std::vector<Triangle>& triangles,
const BoundingVolumeHierarchy& bvh,
const int w,
const int h,
const cv::Mat_<cv::Vec3b>& skybox) {
const int aas = FLAGS_anti_alias_supersample;
cv::Mat_<cv::Vec3f> eqrImageLeft(cv::Size(w * aas, h * aas));
cv::Mat_<cv::Vec3f> eqrImageRight(cv::Size(w * aas, h * aas));
for (int y = 0; y < eqrImageLeft.rows; ++y) {
if (y % 100 == 0) {
LOG(INFO) << y;
}
for (int x = 0; x < eqrImageLeft.cols; ++x) {
// theta increases counterclockwise, but x increases clockwise, hence the
// (1 - x/w) term in the equation for theta below.
const float theta = 2.0f * M_PI * (1.0f - (x + 0.5f) / float(eqrImageLeft.cols));
const float phi = M_PI * (y + 0.5f) / float(eqrImageLeft.rows);
const cv::Vec3f rayOriginLeft =
cv::Vec3f(cos(theta + M_PI / 2.0f), sin(theta + M_PI / 2.0f), 0.0f) *
FLAGS_interpupillary_radius;
const cv::Vec3f rayOriginRight =
cv::Vec3f(cos(theta - M_PI / 2.0f), sin(theta - M_PI / 2.0f), 0.0f) *
FLAGS_interpupillary_radius;
const cv::Vec3f rayDir = cv::Vec3f(sin(phi) * cos(theta), sin(phi) * sin(theta), cos(phi));
const cv::Vec3f rayColorLeft =
head3(traceRayToGetColor(Ray(rayOriginLeft, rayDir), triangles, bvh, skybox));
const cv::Vec3f rayColorRight =
head3(traceRayToGetColor(Ray(rayOriginRight, rayDir), triangles, bvh, skybox));
eqrImageLeft(y, x) = rayColorLeft * 255.0f;
eqrImageRight(y, x) = rayColorRight * 255.0f;
}
}
return std::make_pair(downscale(eqrImageLeft, aas), downscale(eqrImageRight, aas));
}
void renderCamera(
const Camera& cam,
const std::vector<Triangle>& triangles,
const BoundingVolumeHierarchy& bvh,
const cv::Mat_<cv::Vec3b>& skybox,
cv::Mat_<cv::Vec3f>& destImage,
cv::Mat_<float>& destDepthMap) {
const int aas = FLAGS_anti_alias_supersample;
cv::Mat_<cv::Vec3f> image(cv::Size(cam.resolution.x() * aas, cam.resolution.y() * aas));
cv::Mat_<float> depthMap(image.size());
for (int y = 0; y < image.rows; ++y) {
if (y % 100 == 0) {
LOG(INFO) << y;
}
for (int x = 0; x < image.cols; ++x) {
const Camera::Vector2 pixel((x + 0.5f) / aas, (y + 0.5f) / aas);
cv::Vec4f colorAndDepth;
if (cam.isOutsideImageCircle(pixel)) {
colorAndDepth = {0, 0, 0, FLT_MAX};
} else {
const Camera::Ray rig = cam.rig(pixel);
const Ray rigCv(
cv::Vec3f(rig.origin().x(), rig.origin().y(), rig.origin().z()),
cv::Vec3f(rig.direction().x(), rig.direction().y(), rig.direction().z()));
colorAndDepth = traceRayToGetColor(rigCv, triangles, bvh, skybox);
}
image(y, x) = 255.0f * head3(colorAndDepth);
depthMap(y, x) = colorAndDepth[3];
}
}
destImage = downscale(image, aas);
destDepthMap = downscale(depthMap, aas);
corruptImageWithNoise(destImage);
}
void renderCamerasThreaded(
const cv::Mat_<cv::Vec3b>& skybox,
const std::vector<Triangle>& triangles,
const BoundingVolumeHierarchy& bvh,
const std::vector<Camera>& cameras,
const std::string destDir) {
std::vector<std::thread> renderThreads;
std::vector<cv::Mat_<cv::Vec3f>> images(cameras.size(), cv::Mat_<cv::Vec3f>());
std::vector<cv::Mat_<float>> depthMaps(cameras.size(), cv::Mat_<float>());
for (int i = 0; i < int(cameras.size()); ++i) {
LOG(INFO) << folly::sformat("------ rendering camera {}", i);
renderThreads.emplace_back(
renderCamera,
std::ref(cameras[i]),
std::ref(triangles),
std::ref(bvh),
std::ref(skybox),
std::ref(images[i]),
std::ref(depthMaps[i]));
}
for (auto& renderThread : renderThreads) {
renderThread.join();
}
for (int i = 0; i < int(images.size()); ++i) {
imwriteExceptionOnFail(destDir + "/" + cameras[i].id + ".png", images[i]);
imwriteExceptionOnFail(destDir + "/" + cameras[i].id + "_depth.png", depthMaps[i]);
writeCvMat32FC1ToPFM(destDir + "/" + cameras[i].id + "_depth.pfm", depthMaps[i]);
}
}
int main(int argc, char** argv) {
system_util::initDep(argc, argv, kUsageMessage);
CHECK_NE(FLAGS_mode, "");
CHECK_NE(FLAGS_skybox_path, "");
// load skybox
cv::Mat_<cv::Vec3b> skybox = imreadExceptionOnFail(FLAGS_skybox_path, cv::IMREAD_COLOR);
// construct scene of triangles
std::vector<Triangle> triangles;
if (FLAGS_scene == "icosahedron") {
makeIcosahedronScene(triangles);
} else if (FLAGS_scene == "cube") {
makeCubesScene(triangles);
} else if (FLAGS_scene == "ground_plane") {
makeGroundPlaneScene(triangles);
} else {
CHECK(false) << "unexpected scene: " << FLAGS_scene;
}
// bind indices of triangles. we need these to know how to color them after
// finding the ray-bvh intersection.
for (int i = 0; i < int(triangles.size()); ++i) {
triangles[i].selfIdx = i;
}
// build bounding volume hierarchy
LOG(INFO) << "building BVH";
const static int kBVHStopNumTrianglesInLeaf = 20;
const static int kBVHSplitK = 5;
const static int kBVHMaxDepth = 50;
BoundingVolumeHierarchy bvh = BoundingVolumeHierarchy::makeBVH(
triangles,
kBVHStopNumTrianglesInLeaf,
kBVHSplitK,
0, // start at depth = 0
kBVHMaxDepth);
if (FLAGS_mode == "mono_eqr") {
CHECK_NE(FLAGS_dest_mono, "");
CHECK_NE(FLAGS_dest_mono_depth, "");
cv::Mat_<cv::Vec3f> monoEquirect;
cv::Mat_<float> monoEquirectInvDepth;
std::tie(monoEquirect, monoEquirectInvDepth) =
renderMonoEquirect(triangles, bvh, FLAGS_eqr_width, FLAGS_eqr_height, skybox);
imwriteExceptionOnFail(FLAGS_dest_mono, monoEquirect);
imwriteExceptionOnFail(FLAGS_dest_mono_depth, monoEquirectInvDepth * 255.0);
} else if (FLAGS_mode == "stereo_eqr") {
CHECK_NE(FLAGS_dest_left, "");
CHECK_NE(FLAGS_dest_right, "");
CHECK_NE(FLAGS_dest_stereo, "");
std::pair<cv::Mat_<cv::Vec3f>, cv::Mat_<cv::Vec3f>> eqrLeftRight =
renderStereoEquirect(triangles, bvh, FLAGS_eqr_width, FLAGS_eqr_height, skybox);
cv::Mat_<cv::Vec3f> stereoPair;
vconcat(eqrLeftRight.first, eqrLeftRight.second, stereoPair);
imwriteExceptionOnFail(FLAGS_dest_left, eqrLeftRight.first);
imwriteExceptionOnFail(FLAGS_dest_right, eqrLeftRight.second);
imwriteExceptionOnFail(FLAGS_dest_stereo, stereoPair);
} else {
std::vector<Camera> cameras;
if (FLAGS_mode == "pinhole_ring") {
cameras = makeHorizontalRingOfPinholeCameras(
FLAGS_num_cams_in_ring,
FLAGS_rig_radius,
FLAGS_pinhole_width,
FLAGS_pinhole_height,
FLAGS_pinhole_fov_horizontal,
FLAGS_pinhole_aspect_ratio);
} else if (FLAGS_mode == "ftheta_ring") {
cameras = makeHorizontalRingOfFThetaCameras(
FLAGS_num_cams_in_ring,
FLAGS_rig_radius,
FLAGS_ftheta_width,
FLAGS_ftheta_height,
FLAGS_ftheta_image_circle_radius,
FLAGS_ftheta_image_circle_fov);
// add top camera, too
addTopCamera(
cameras,
FLAGS_ftheta_width,
FLAGS_ftheta_height,
FLAGS_ftheta_image_circle_radius,
FLAGS_ftheta_image_circle_fov);
} else if (FLAGS_mode == "dodecahedron") {
cameras = makeDodecahedronOfFThetaCameras(
FLAGS_rig_radius,
FLAGS_ftheta_width,
FLAGS_ftheta_height,
FLAGS_ftheta_image_circle_radius,
FLAGS_ftheta_image_circle_fov);
} else if (FLAGS_mode == "icosahedron") {
cameras = makeIcosahedronOfFThetaCameras(
FLAGS_rig_radius,
FLAGS_ftheta_width,
FLAGS_ftheta_height,
FLAGS_ftheta_image_circle_radius,
FLAGS_ftheta_image_circle_fov);
} else if (FLAGS_mode == "rig_from_json") {
CHECK_NE(FLAGS_rig_in, "");
cameras = Camera::loadRig(FLAGS_rig_in);
} else {
CHECK(false) << "unexpected mode: " << FLAGS_mode;
}
if (!FLAGS_rig_out.empty()) {
const std::vector<std::string> comments = {};
const int doubleNumDigits = 10;
Camera::saveRig(FLAGS_rig_out, cameras, comments, doubleNumDigits);
}
if (!FLAGS_dest_cam_images.empty()) {
renderCamerasThreaded(skybox, triangles, bvh, cameras, FLAGS_dest_cam_images);
}
}
return EXIT_SUCCESS;
}