Skip to content
This repository has been archived by the owner on Feb 1, 2023. It is now read-only.
/ fronni Public archive

machine learning model performance metrics & charts with confidence intervals, optimized with numba to be fast

License

Notifications You must be signed in to change notification settings

facebookarchive/fronni

Repository files navigation

fronni

A Python library for quickly calculating & displaying machine learning model performance metrics with confidence intervals.

How fronni works?

https://medium.com/@kaushikm/fronni-a-python-library-for-quickly-calculating-machine-learning-model-performance-metrics-with-3baf28eaa5c0

Requirements

  • Python >= 3.6

  • numba

  • numpy

  • scikit-learn

  • plotly

Installing fronni

pip install fronni

Full documentation

Functions from the classification module:

classification_report

Generates confidence intervals for precision, recall, & F1 metrics for a binary or multi-class classification model, given arrays of predicted & label values.

Parameter Type Default
label Numpy array or Pandas series None
predicted Numpy array or Pandas series None
n integer, number of bootstrap iterations 1,000
confidence_level integer value between 1 & 100 95
as_dict Boolean, return nested dictionary if True otherwise Pandas dataframe False
confidence_level value between 1 & 100 95
sort_by_sample_size Boolean, return the Pandas dataframe, sorted in descending order of class sample size False

plot_classification_report

Plots precision, recall, & confidence intervals for F1 metrics for a binary or multi-class classification model, given a classification report input.

Parameter Type Default
report output from classification_report None
save_to_filename string, path of filename image to save like "image.png" None

From the regression module:

regression_report

Generates confidence intervals for RMSE, MAE, and R^2 metrics for a regression model, given arrays of predicted & label values.

Parameter Type Default
label Numpy array or Pandas series None
predicted Numpy array or Pandas series None
n integer, number of bootstrap iterations 1,000
as_dict Boolean, return nested dictionary if True otherwise Pandas dataframe False

See the CONTRIBUTING file for how to help out.

License

fronni is Apache 2.0 licensed, as found in the LICENSE file.

About

machine learning model performance metrics & charts with confidence intervals, optimized with numba to be fast

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages