forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpriorities.go
248 lines (221 loc) · 9.45 KB
/
priorities.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
/*
Copyright 2014 The Kubernetes Authors All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package priorities
import (
"math"
"github.com/golang/glog"
"k8s.io/kubernetes/pkg/api"
"k8s.io/kubernetes/pkg/api/resource"
"k8s.io/kubernetes/pkg/labels"
"k8s.io/kubernetes/plugin/pkg/scheduler/algorithm"
"k8s.io/kubernetes/plugin/pkg/scheduler/algorithm/predicates"
)
// the unused capacity is calculated on a scale of 0-10
// 0 being the lowest priority and 10 being the highest
func calculateScore(requested int64, capacity int64, node string) int {
if capacity == 0 {
return 0
}
if requested > capacity {
glog.V(2).Infof("Combined requested resources %d from existing pods exceeds capacity %d on node %s",
requested, capacity, node)
return 0
}
return int(((capacity - requested) * 10) / capacity)
}
// For each of these resources, a pod that doesn't request the resource explicitly
// will be treated as having requested the amount indicated below, for the purpose
// of computing priority only. This ensures that when scheduling zero-request pods, such
// pods will not all be scheduled to the machine with the smallest in-use request,
// and that when scheduling regular pods, such pods will not see zero-request pods as
// consuming no resources whatsoever. We chose these values to be similar to the
// resources that we give to cluster addon pods (#10653). But they are pretty arbitrary.
// As described in #11713, we use request instead of limit to deal with resource requirements.
const defaultMilliCpuRequest int64 = 100 // 0.1 core
const defaultMemoryRequest int64 = 200 * 1024 * 1024 // 200 MB
// TODO: Consider setting default as a fixed fraction of machine capacity (take "capacity api.ResourceList"
// as an additional argument here) rather than using constants
func getNonzeroRequests(requests *api.ResourceList) (int64, int64) {
var out_millicpu, out_memory int64
// Override if un-set, but not if explicitly set to zero
if (*requests.Cpu() == resource.Quantity{}) {
out_millicpu = defaultMilliCpuRequest
} else {
out_millicpu = requests.Cpu().MilliValue()
}
// Override if un-set, but not if explicitly set to zero
if (*requests.Memory() == resource.Quantity{}) {
out_memory = defaultMemoryRequest
} else {
out_memory = requests.Memory().Value()
}
return out_millicpu, out_memory
}
// Calculate the resource occupancy on a node. 'node' has information about the resources on the node.
// 'pods' is a list of pods currently scheduled on the node.
func calculateResourceOccupancy(pod *api.Pod, node api.Node, pods []*api.Pod) algorithm.HostPriority {
totalMilliCPU := int64(0)
totalMemory := int64(0)
capacityMilliCPU := node.Status.Capacity.Cpu().MilliValue()
capacityMemory := node.Status.Capacity.Memory().Value()
for _, existingPod := range pods {
for _, container := range existingPod.Spec.Containers {
cpu, memory := getNonzeroRequests(&container.Resources.Requests)
totalMilliCPU += cpu
totalMemory += memory
}
}
// Add the resources requested by the current pod being scheduled.
// This also helps differentiate between differently sized, but empty, nodes.
for _, container := range pod.Spec.Containers {
cpu, memory := getNonzeroRequests(&container.Resources.Requests)
totalMilliCPU += cpu
totalMemory += memory
}
cpuScore := calculateScore(totalMilliCPU, capacityMilliCPU, node.Name)
memoryScore := calculateScore(totalMemory, capacityMemory, node.Name)
glog.V(10).Infof(
"%v -> %v: Least Requested Priority, Absolute/Requested: (%d, %d) / (%d, %d) Score: (%d, %d)",
pod.Name, node.Name,
totalMilliCPU, totalMemory,
capacityMilliCPU, capacityMemory,
cpuScore, memoryScore,
)
return algorithm.HostPriority{
Host: node.Name,
Score: int((cpuScore + memoryScore) / 2),
}
}
// LeastRequestedPriority is a priority function that favors nodes with fewer requested resources.
// It calculates the percentage of memory and CPU requested by pods scheduled on the node, and prioritizes
// based on the minimum of the average of the fraction of requested to capacity.
// Details: cpu((capacity - sum(requested)) * 10 / capacity) + memory((capacity - sum(requested)) * 10 / capacity) / 2
func LeastRequestedPriority(pod *api.Pod, podLister algorithm.PodLister, nodeLister algorithm.NodeLister) (algorithm.HostPriorityList, error) {
nodes, err := nodeLister.List()
if err != nil {
return algorithm.HostPriorityList{}, err
}
podsToMachines, err := predicates.MapPodsToMachines(podLister)
list := algorithm.HostPriorityList{}
for _, node := range nodes.Items {
list = append(list, calculateResourceOccupancy(pod, node, podsToMachines[node.Name]))
}
return list, nil
}
type NodeLabelPrioritizer struct {
label string
presence bool
}
func NewNodeLabelPriority(label string, presence bool) algorithm.PriorityFunction {
labelPrioritizer := &NodeLabelPrioritizer{
label: label,
presence: presence,
}
return labelPrioritizer.CalculateNodeLabelPriority
}
// CalculateNodeLabelPriority checks whether a particular label exists on a node or not, regardless of its value.
// If presence is true, prioritizes nodes that have the specified label, regardless of value.
// If presence is false, prioritizes nodes that do not have the specified label.
func (n *NodeLabelPrioritizer) CalculateNodeLabelPriority(pod *api.Pod, podLister algorithm.PodLister, nodeLister algorithm.NodeLister) (algorithm.HostPriorityList, error) {
var score int
nodes, err := nodeLister.List()
if err != nil {
return nil, err
}
labeledNodes := map[string]bool{}
for _, node := range nodes.Items {
exists := labels.Set(node.Labels).Has(n.label)
labeledNodes[node.Name] = (exists && n.presence) || (!exists && !n.presence)
}
result := []algorithm.HostPriority{}
//score int - scale of 0-10
// 0 being the lowest priority and 10 being the highest
for nodeName, success := range labeledNodes {
if success {
score = 10
} else {
score = 0
}
result = append(result, algorithm.HostPriority{Host: nodeName, Score: score})
}
return result, nil
}
// BalancedResourceAllocation favors nodes with balanced resource usage rate.
// BalancedResourceAllocation should **NOT** be used alone, and **MUST** be used together with LeastRequestedPriority.
// It calculates the difference between the cpu and memory fracion of capacity, and prioritizes the host based on how
// close the two metrics are to each other.
// Detail: score = 10 - abs(cpuFraction-memoryFraction)*10. The algorithm is partly inspired by:
// "Wei Huang et al. An Energy Efficient Virtual Machine Placement Algorithm with Balanced Resource Utilization"
func BalancedResourceAllocation(pod *api.Pod, podLister algorithm.PodLister, nodeLister algorithm.NodeLister) (algorithm.HostPriorityList, error) {
nodes, err := nodeLister.List()
if err != nil {
return algorithm.HostPriorityList{}, err
}
podsToMachines, err := predicates.MapPodsToMachines(podLister)
list := algorithm.HostPriorityList{}
for _, node := range nodes.Items {
list = append(list, calculateBalancedResourceAllocation(pod, node, podsToMachines[node.Name]))
}
return list, nil
}
func calculateBalancedResourceAllocation(pod *api.Pod, node api.Node, pods []*api.Pod) algorithm.HostPriority {
totalMilliCPU := int64(0)
totalMemory := int64(0)
score := int(0)
for _, existingPod := range pods {
for _, container := range existingPod.Spec.Containers {
cpu, memory := getNonzeroRequests(&container.Resources.Requests)
totalMilliCPU += cpu
totalMemory += memory
}
}
// Add the resources requested by the current pod being scheduled.
// This also helps differentiate between differently sized, but empty, nodes.
for _, container := range pod.Spec.Containers {
cpu, memory := getNonzeroRequests(&container.Resources.Requests)
totalMilliCPU += cpu
totalMemory += memory
}
capacityMilliCPU := node.Status.Capacity.Cpu().MilliValue()
capacityMemory := node.Status.Capacity.Memory().Value()
cpuFraction := fractionOfCapacity(totalMilliCPU, capacityMilliCPU)
memoryFraction := fractionOfCapacity(totalMemory, capacityMemory)
if cpuFraction >= 1 || memoryFraction >= 1 {
// if requested >= capacity, the corresponding host should never be preferrred.
score = 0
} else {
// Upper and lower boundary of difference between cpuFraction and memoryFraction are -1 and 1
// respectively. Multilying the absolute value of the difference by 10 scales the value to
// 0-10 with 0 representing well balanced allocation and 10 poorly balanced. Subtracting it from
// 10 leads to the score which also scales from 0 to 10 while 10 representing well balanced.
diff := math.Abs(cpuFraction - memoryFraction)
score = int(10 - diff*10)
}
glog.V(10).Infof(
"%v -> %v: Balanced Resource Allocation, Absolute/Requested: (%d, %d) / (%d, %d) Score: (%d)",
pod.Name, node.Name,
totalMilliCPU, totalMemory,
capacityMilliCPU, capacityMemory,
score,
)
return algorithm.HostPriority{
Host: node.Name,
Score: score,
}
}
func fractionOfCapacity(requested, capacity int64) float64 {
if capacity == 0 {
return 1
}
return float64(requested) / float64(capacity)
}