Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add transform to ensure shape multiple of N #401

Merged
merged 6 commits into from
Dec 29, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 7 additions & 0 deletions docs/source/transforms/preprocessing.rst
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,13 @@ Spatial
:members: _get_six_bounds_parameters


:class:`EnsureShapeMultiple`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.. autoclass:: EnsureShapeMultiple
:show-inheritance:


:class:`Crop`
~~~~~~~~~~~~~

Expand Down
31 changes: 31 additions & 0 deletions tests/transforms/preprocessing/test_ensure_shape_multiple.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import torchio as tio
from ...utils import TorchioTestCase


class TestEnsureShapeMultiple(TorchioTestCase):

def test_bad_method(self):
with self.assertRaises(ValueError):
tio.EnsureShapeMultiple(1, method='bad')

def test_pad(self):
sample_t1 = self.sample_subject.t1
assert sample_t1.shape == (1, 10, 20, 30)
transform = tio.EnsureShapeMultiple(4, method='pad')
transformed = transform(sample_t1)
assert transformed.shape == (1, 12, 20, 32)

def test_crop(self):
sample_t1 = self.sample_subject.t1
assert sample_t1.shape == (1, 10, 20, 30)
transform = tio.EnsureShapeMultiple(4, method='crop')
transformed = transform(sample_t1)
assert transformed.shape == (1, 8, 20, 28)

def test_2d(self):
sample_t1 = self.sample_subject.t1
sample_2d = sample_t1.data[..., :1]
assert sample_2d.shape == (1, 10, 20, 1)
transform = tio.EnsureShapeMultiple(4, method='crop')
transformed = transform(sample_2d)
assert transformed.shape == (1, 8, 20, 1)
1 change: 1 addition & 0 deletions tests/transforms/test_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@ def get_transform(self, channels, is_3d=True, labels=True):
tio.CropOrPad(cp_args),
tio.ToCanonical(),
tio.RandomAnisotropy(downsampling=(1.75, 2), axes=axes_downsample),
tio.EnsureShapeMultiple(2, method='crop'),
tio.Resample((1, 1.1, 1.25)),
tio.RandomFlip(axes=flip_axes, flip_probability=1),
tio.RandomMotion(),
Expand Down
2 changes: 2 additions & 0 deletions torchio/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@
from .preprocessing import ToCanonical
from .preprocessing import ZNormalization
from .preprocessing import RescaleIntensity
from .preprocessing import EnsureShapeMultiple
from .preprocessing import HistogramStandardization
from .preprocessing.intensity.histogram_standardization import train as train_histogram
from .preprocessing.label.remap_labels import RemapLabels
Expand Down Expand Up @@ -81,6 +82,7 @@
'HistogramStandardization',
'RescaleIntensity',
'CropOrPad',
'EnsureShapeMultiple',
'train_histogram',
'RemapLabels',
'SequentialLabels',
Expand Down
4 changes: 3 additions & 1 deletion torchio/transforms/preprocessing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from .spatial.resample import Resample
from .spatial.crop_or_pad import CropOrPad
from .spatial.to_canonical import ToCanonical
from .spatial.ensure_shape_multiple import EnsureShapeMultiple

from .intensity.rescale import RescaleIntensity
from .intensity.z_normalization import ZNormalization
Expand All @@ -19,8 +20,9 @@
'Resample',
'ToCanonical',
'CropOrPad',
'RescaleIntensity',
'EnsureShapeMultiple',
'ZNormalization',
'RescaleIntensity',
'HistogramStandardization',
'RemapLabels',
'SequentialLabels',
Expand Down
62 changes: 62 additions & 0 deletions torchio/transforms/preprocessing/spatial/ensure_shape_multiple.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
from typing import Union, Optional

import numpy as np

from ... import SpatialTransform
from ....utils import to_tuple
from ....data.subject import Subject
from ....typing import TypeTripletInt
from .crop_or_pad import CropOrPad


class EnsureShapeMultiple(SpatialTransform):
"""Crop or pad an image to a shape that is a multiple of :math:`N`.

Args:
target_multiple: Tuple :math:`(w, h, d)`. If a single value :math:`n` is
provided, then :math:`w = h = d = n`.
method: Either ``'crop'`` or ``'pad'``.
**kwargs: See :class:`~torchio.transforms.Transform` for additional
keyword arguments.

Example:
>>> import torchio as tio
>>> image = tio.datasets.Colin27().t1
>>> image.shape
(1, 181, 217, 181)
>>> transform = tio.EnsureShapeMultiple(8, method='pad')
>>> transformed = transform(image)
>>> transformed.shape
(1, 184, 224, 184)
>>> transform = tio.EnsureShapeMultiple(8, method='crop')
>>> transformed = transform(image)
>>> transformed.shape
(1, 176, 216, 176)
>>> image_2d = image.data[..., :1]
>>> image_2d.shape
torch.Size([1, 181, 217, 1])
>>> transformed = transform(image_2d)
>>> transformed.shape
torch.Size([1, 176, 216, 1])

"""
def __init__(
self,
target_multiple: Union[int, TypeTripletInt],
*,
method: Optional[str] = 'pad',
**kwargs
):
super().__init__(**kwargs)
self.target_multiple = np.array(to_tuple(target_multiple, 3))
if method not in ('crop', 'pad'):
raise ValueError('Method must be "crop" or "pad"')
self.method = method

def apply_transform(self, subject: Subject) -> Subject:
source_shape = np.array(subject.spatial_shape, np.uint16)
function = np.floor if self.method == 'crop' else np.ceil
integer_ratio = function(source_shape / self.target_multiple)
target_shape = integer_ratio * self.target_multiple
target_shape = np.maximum(target_shape, 1)
return CropOrPad(target_shape.astype(int))(subject)
3 changes: 2 additions & 1 deletion torchio/transforms/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -129,13 +129,14 @@ def apply_transform(self, subject: Subject):

def add_transform_to_subject_history(self, subject):
from .augmentation import RandomTransform
from . import Compose, OneOf, CropOrPad
from . import Compose, OneOf, CropOrPad, EnsureShapeMultiple
from .preprocessing.label import SequentialLabels
call_others = (
RandomTransform,
Compose,
OneOf,
CropOrPad,
EnsureShapeMultiple,
SequentialLabels,
)
if not isinstance(self, call_others):
Expand Down