einx is a Python library that provides a universal interface to formulate tensor operations in frameworks such as Numpy, PyTorch, Jax and Tensorflow. The design is based on the following principles:
- Provide a set of elementary tensor operations following Numpy-like naming:
einx.{sum|max|where|add|dot|flip|get_at|...}
- Use einx notation to express vectorization of the elementary operations. einx notation is inspired by einops, but introduces several novel concepts such as
[]
-bracket notation and full composability that allow using it as a universal language for tensor operations.
einx can be integrated and mixed with existing code seamlessly. All operations are just-in-time compiled into regular Python functions using Python's exec() and invoke operations from the respective framework.
Getting started:
- Tutorial
- Example: GPT-2 with einx
- How is einx different from einops?
- How is einx notation universal?
- API reference
pip install einx
See Installation for more information.
import einx
x = {np.asarray|torch.as_tensor|jnp.asarray|...}(...) # Create some tensor
einx.sum("a [b]", x) # Sum-reduction along second axis
einx.flip("... (g [c])", x, c=2) # Flip pairs of values along the last axis
einx.mean("b [...] c", x) # Spatial mean-pooling
einx.multiply("a..., b... -> (a b)...", x, y) # Kronecker product
einx.sum("b (s [ds])... c", x, ds=(2, 2)) # Sum-pooling with 2x2 kernel
einx.add("a, b -> a b", x, y) # Outer sum
einx.dot("a [b], [b] c -> a c", x, y) # Matmul
einx.get_at("b [h w] c, b i [2] -> b i c", x, y) # Gather values at coordinates
einx.rearrange("b (q + k) -> b q, b k", x, q=2) # Split
einx.rearrange("b c, 1 -> b (c + 1)", x, [42]) # Append number to each channel
# Apply custom operations:
einx.vmap("b [s...] c -> b c", x, op=np.mean) # Spatial mean-pooling
einx.vmap("a [b], [b] c -> a c", x, y, op=np.dot) # Matmul
# Layer normalization
mean = einx.mean("b... [c]", x, keepdims=True)
var = einx.var("b... [c]", x, keepdims=True)
x = (x - mean) * torch.rsqrt(var + epsilon)
# Prepend class token
einx.rearrange("b s... c, c -> b (1 + (s...)) c", x, cls_token)
# Multi-head attention
attn = einx.dot("b q (h c), b k (h c) -> b q k h", q, k, h=8)
attn = einx.softmax("b q [k] h", attn)
x = einx.dot("b q k h, b k (h c) -> b q (h c)", attn, v)
# Matmul in linear layers
einx.dot("b... [c1->c2]", x, w) # - Regular
einx.dot("b... (g [c1->c2])", x, w) # - Grouped: Same weights per group
einx.dot("b... ([g c1->g c2])", x, w) # - Grouped: Different weights per group
einx.dot("b [s...->s2] c", x, w) # - Spatial mixing as in MLP-mixer
See Common neural network ops for more examples.
import einx.nn.{torch|flax|haiku|equinox|keras} as einn
batchnorm = einn.Norm("[b...] c", decay_rate=0.9)
layernorm = einn.Norm("b... [c]") # as used in transformers
instancenorm = einn.Norm("b [s...] c")
groupnorm = einn.Norm("b [s...] (g [c])", g=8)
rmsnorm = einn.Norm("b... [c]", mean=False, bias=False)
channel_mix = einn.Linear("b... [c1->c2]", c2=64)
spatial_mix1 = einn.Linear("b [s...->s2] c", s2=64)
spatial_mix2 = einn.Linear("b [s2->s...] c", s=(64, 64))
patch_embed = einn.Linear("b (s [s2->])... [c1->c2]", s2=4, c2=64)
dropout = einn.Dropout("[...]", drop_rate=0.2)
spatial_dropout = einn.Dropout("[b] ... [c]", drop_rate=0.2)
droppath = einn.Dropout("[b] ...", drop_rate=0.2)
See examples/train_{torch|flax|haiku|equinox|keras}.py
for example trainings on CIFAR10, GPT-2 and Mamba for working example implementations of language models using einx, and Tutorial: Neural networks for more details.
einx traces the required backend operations for a given call into graph representation and just-in-time compiles them into a regular Python function using Python's exec()
. This reduces overhead to a single cache lookup and allows inspecting the generated function. For example:
>>> x = np.zeros((3, 10, 10))
>>> graph = einx.sum("... (g [c])", x, g=2, graph=True)
>>> print(graph)
import numpy as np
def op0(i0):
x0 = np.reshape(i0, (3, 10, 2, 5))
x1 = np.sum(x0, axis=3)
return x1
See Just-in-time compilation for more details.