Skip to content

fjiang9/sanet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Speaker Attractor Network: Generalizing Speech Separation to Unseen Numbers of Sources

Paper link

Dataset


Training

Stage 1 - Encoder-decoder pre-training

python train.py --stage 1 --n_filters 128 --kernel_size 16 --stride 8 --mask irm --enc_act relu --bias no --cuda $cuda_id --train_metadata $train_set --val_metadata $val_set 

Stage 2 - Embedding network training

  • Conv-DANet
python train.py --stage 2 --model_dir conv-danet --v_act yes --v_norm no --sim dotProduct --sisdr 1.0 --cuda $cuda_id --train_metadata $train_set --val_metadata $val_set
  • SANet
python train.py --stage 2 --model_dir sanet --v_act no --v_norm yes --sim cos --alpha 10.0 --sisdr 1.0 --spk_circle 1.0 --compact 5.0 --cuda $cuda_id --train_metadata $train_set --val_metadata $val_set 
  • SANet (w/o )
python train.py --stage 2 --model_dir sanet-0lspk --v_act no --v_norm yes --sim cos --alpha 10.0 --sisdr 1.0 --compact 1.0 --cuda $cuda_id --train_metadata $train_set --val_metadata $val_set 
  • SANet (w/o )
python train.py --stage 2 --model_dir sanet-0lcom --v_act no --v_norm yes --sim cos --alpha 10.0 --sisdr 1.0 --spk_circle 1.0 --cuda $cuda_id --train_metadata $train_set --val_metadata $val_set 
  • SANet (trained on 2- & 3-speaker mixtures)
python train.py --stage 2 --model_dir sanet-23 --v_act no --v_norm yes --sim cos --alpha 10.0 --sisdr 1.0 --spk_circle 0.4 --compact 5.0 --cuda $cuda_id --train_metadata $train_set1 $train_set2 --val_metadata $val_set1 $val_set2 --train_n_src 2 3 --val_n_src 2 3 --batch_size 24

Testing

python test.py --stage 2 --model_dir $model --cuda $cuda_id

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages