Skip to content

fmjohnson97/LM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LM

Code for the LM project collaboration

It may be helpful to install this git repo for the maze code: https://github.com/MattChanTK/gym-maze.

Required Packages: Quandl, Gym, Pygame, Pandas, Sklearn, Torchvision, Pytorch, Tqdm, Scipy

Optional Packages: Comet_ml

Initial Stock Experiments

  • stockSynthesis.py - simple LSTM close price prediction given the corresponding open price
  • predictOpen.py - predict the next open price given the previous one
  • LSTM_Sequential.py - predict an open price sequence given a sequence of previous open prices
  • stockDataset.py - manipulate kaggle stock data into sequences of open prices
  • stockAgent.py - reinforcement learning agent to learn a multiplier to produce the next open price
  • stockRL.py - runner code for the Stock Agent to predict open prices
  • pytorchSequentialPredict.py - LSTM_Sequential.py but implemented in pytorch instead of keras

Q Learning and Feudal RL Maze Experiments

  • maze_2d_q_learning.py - solve a maze using Q learning
  • maze_env.py - creates the base maze environment for these experiments
  • maze_view_2D.py - helper for maze_env.py
  • maze_2d_dqn.py - solve a maze using Deep Q learning
  • maze_multiscale_qlearning.py - solve a maze using Feudal Q learning
  • multi_maze.py - creates the environment for the feudal learning experiments
  • maze2d_002.npy - maze file for the manager (2x2 maze)
  • maze2d_003.npy - maze file for the worker (4x4 maze)
  • maze_qmodels.py - contains code for the worker and manager networks for maze_multiscale_qlearning.py
  • maze_multiscale_dqn.py - solve a maze using Feudal Deep Q Networks
  • maze_dqn_models.py - contains code for the worker and manager networks for maze_multiscale_dqn.py

Stock Agent Portfolio Experiments

  • stock_qlearning.py - portfolio experiment with a Q learning agent
  • stock_env.py - stock market environment for stock_qlearning.py
  • stock_dqn.py - portfolio experiment with a DQN agent
  • stock_env_dqn.py - stock market environment for stock_dqn.py
  • multiscale_q_stock.py - portfolio experiment with feudal Q learning
  • multi_stock_env.py - stock market environment for multiscale_q_stock.py
  • stock_qmodles.py - contains the worker and manager code for multiscale_q_stock.py
  • stock_multi_dqn.py - portfolio experiment with feudal DQNs
  • multi_stock_env_dqn.py - stock market environment for stock_multi_dqn.py
  • stock_dqn_models.py - contains the worker, manager, and other helper classes for multi_stock_env_dqn.py
  • multi_transaction_feudal.py - feudal portfolio experiment where the manager chooses from several workers with different levels of temporal abstraction
  • multi_trans_stock_env.py - stock market environment for multi_transaction_feudal.py
  • hard_coded_qLearning.py - portfolio experiment with a hard coded agent as a baseline
  • dynamicM_hardcodeW.py - feudal portfolio experiment where the manager chooses from several hard coded workers
  • hard_coded_agents.py - contains the hard coded agents for dynamicM_hardcodeW.py

Steering Angle and TSNE Prediction

  • mutAngTSNE.py - use the TSNE embedding as the subroutine ID when predicting steering angles; also capable of predicting multiple steering angles out
  • predZKomanda.py - use a modified version of the winning udacity steering angle challenge network to predict steering angles and subroutine IDs
  • tsnePredict.py - predict the TSNE centroids using images (poor results)
  • udacityData.py - dataset class to process the udacity driving dataset
  • komanda.py - predict steering angles using the winning udacity steering angle challenge network
  • tsnePrevDataPred.py - predict the next TSNE centroid given the input data for the previous centroid (poor results)

Releases

No releases published

Packages

No packages published

Languages