pip install squaad
- V2.0
https://github.com/fostiropoulos/squaad/releases/download/2.1/squaad-2.1.tar.gz
pip install squaad-2.0.tar.gz
myConnection=db("config.json","cache")
print("Connection Status: %s"%myConnection.testConnection())
- Config.json follows the following format:
{"pgsql":{"host":"","user":"","passwd":"","db":""} }
- Cache folder is used to save results of the queries and uses the cache next time you execute a query.
stats.gamesHowellBinomial({"GROUP1":{True:100, False:3999}, "GROUP2":{True:2999,False:2939}})
Parameters
X
Pandas dataframe with set of data. Each column is a featureY
Labels for the set of data.split_columns
(Optional) unimplemented, columns to split by. That is columns that can have bias, we take into consideration during splittingkfolds
(Optional) number of folds to run.classifiers
(Optional) dictionary containing classifiers to usebalancers
(Optional) the balancers you want to run
Default Classifiers:
- Nearest Neighbors
- Linear SVM
- RBF SVM
- Gaussian Process
- Decision Tree
- Random Forest
- Neural Net
- AdaBoost
- Naive Bayes
- QDA
Default Classifiers:
- Unbalanced
- SMOTE
- SMOTEEN
- SMOTETomek
- RandomUnderSampler
X=df[['locs_inc', 'cplxs_inc', 'smls_inc', 'vuls_inc', 'fbgs_inc', 'locs_dec', 'cplxs_dec', 'smls_dec', 'vuls_dec', 'fbgs_dec']]
Y=df['affiliation']
mlPipeline.classificationPipeLineKfold(X,Y)