Skip to content

[ICLR 2022] Official repository for "Robust Unlearnable Examples: Protecting Data Against Adversarial Learning"

License

Notifications You must be signed in to change notification settings

fshp971/robust-unlearnable-examples

Repository files navigation

Robust Unlearnable Examples: Protecting Data Against Adversarial Learning

This is the official repository for ICLR 2022 paper "Robust Unlearnable Examples: Protecting Data Against Adversarial Learning" by Shaopeng Fu, Fengxiang He, Yang Liu, Li Shen and Dacheng Tao.

Requirements

  • Python 3.8
  • PyTorch 1.8.1
  • Torchvision 0.9.1
  • OpenCV 4.5.5

Install dependencies using pip

pip install -r requirements.txt

Install dependencies using Anaconda

It is recommended to create your experiment environment with Anaconda3.

conda install pytorch=1.8.1 torchvision=0.9.1 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge opencv=4.5.5

Quick Start

We give an example of creating robust unlearnable examples from CIFAR-10 dataset. More experiment examples can be found in ./scripts.

Generate robust error-minimizing noise for CIFAR-10 dataset

python generate_robust_em.py \
    --arch resnet18 \
    --dataset cifar10 \
    --train-steps 5000 \
    --batch-size 128 \
    --optim sgd \
    --lr 0.1 \
    --lr-decay-rate 0.1 \
    --lr-decay-freq 2000 \
    --weight-decay 5e-4 \
    --momentum 0.9 \
    --pgd-radius 8 \
    --pgd-steps 10 \
    --pgd-step-size 1.6 \
    --pgd-random-start \
    --atk-pgd-radius 4 \
    --atk-pgd-steps 10 \
    --atk-pgd-step-size 0.8 \
    --atk-pgd-random-start \
    --samp-num 5 \
    --report-freq 1000 \
    --save-freq 1000 \
    --data-dir ./data \
    --save-dir ./exp_data/cifar10/noise/rem8-4 \
    --save-name rem

Perform adversarial training on robust unlearnable examples

python train.py \
    --arch resnet18 \
    --dataset cifar10 \
    --train-steps 40000 \
    --batch-size 128 \
    --optim sgd \
    --lr 0.1 \
    --lr-decay-rate 0.1 \
    --lr-decay-freq 16000 \
    --weight-decay 5e-4 \
    --momentum 0.9 \
    --pgd-radius 4 \
    --pgd-steps 10 \
    --pgd-step-size 0.8 \
    --pgd-random-start \
    --report-freq 1000 \
    --save-freq 100000 \
    --noise-path ./exp_data/cifar10/noise/rem8-4/rem-fin-def-noise.pkl \
    --data-dir ./data \
    --save-dir ./exp_data/cifar10/train/rem8-4/r4 \
    --save-name train

Citation

@inproceedings{fu2022robust,
  title={Robust Unlearnable Examples: Protecting Data Against Adversarial Learning},
  author={Shaopeng Fu and Fengxiang He and Yang Liu and Li Shen and Dacheng Tao},
  booktitle={International Conference on Learning Representations},
  year={2022}
}

Acknowledgment

About

[ICLR 2022] Official repository for "Robust Unlearnable Examples: Protecting Data Against Adversarial Learning"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published