The goal of lmmpar is to ...
You can install lmmpar from github with:
# install.packages("devtools")
devtools::install_github("fulyagokalp/lmmpar")
This is a basic example which shows you how to solve a common problem:
# Set up fake data
n <- 10000 # number of subjects
m <- 4 # number of repeats
N <- n * m # true size of data
p <- 50 # number of betas
q <- 2 # width of random effects
# Initial parameters
# beta has a 1 for the first value. all other values are ~N(10, 1)
beta <- rbind(1, matrix(rnorm(p, 10), p, 1))
R <- diag(m)
D <- matrix(c(16, 0, 0, 0.025), nrow = q)
sigma <- 1
# Set up data
subject <- rep(1:n, each = m)
repeats <- rep(1:m, n)
subj_x <- lapply(1:n, function(i) cbind(1, matrix(rnorm(m * p), nrow = m)))
X <- do.call(rbind, subj_x)
Z <- X[, 1:q]
subj_beta <- lapply(1:n, function(i) mnormt::rmnorm(1, rep(0, q), D))
subj_err <- lapply(1:n, function(i) mnormt::rmnorm(1, rep(0, m), sigma * R))
# create a known response
subj_y <- lapply(
seq_len(n),
function(i) {
(subj_x[[i]] %*% beta) +
(subj_x[[i]][, 1:q] %*% subj_beta[[i]]) +
subj_err[[i]]
}
)
Y <- do.call(rbind, subj_y)
# run the algorithm in parallel to recover the known betas
ans <- lmmpar(
Y,
X,
Z,
subject,
beta = beta,
R = R,
D = D,
cores = 4,
sigma = sigma,
verbose = TRUE
)