Skip to content

MC_Ising is an implementation of Monte-Carlo methods for image denoising using the Ising Model

Notifications You must be signed in to change notification settings

g0bel1n/MC_Ising

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Image denoising using ISING MODEL and GIBBS SAMPLING

Mathis Matthieu, Benjamin Pipaud, Lucas Saban. MC course @Ensae


Ising Model denoising using hyperparameter estimation and MCMC techniques.

Examples

With systematic scan on the left and randomized scan on the right:

example random_gif

⚡️ On Boarding

pip install -r requirements.txt

Then :

main.py --findsigma True --alpha 0.0 #etc...

The arguments available are :

  • alpha : The alpha parameter of the Ising Model, default value is 0
  • beta: The beta parameter of the Ising Model, default value is 1.3
  • sigma : Variance of the gaussian noise, default value is 179 (for 8 bit images)
  • findsigma : If set to True, the denoising will be done without being given the value of sigma, default value False
  • g : If set to true a gif will be produced. Default value to True.
  • b : Number of burn in steps. Default to 40
  • ns: Number of sampling steps. Default to 5
  • imp: Path of the raw image. Default to 'data/input/test_img.jpeg'

About

MC_Ising is an implementation of Monte-Carlo methods for image denoising using the Ising Model

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages