Mathis Matthieu, Benjamin Pipaud, Lucas Saban. MC course @Ensae
Ising Model denoising using hyperparameter estimation and MCMC techniques.
With systematic scan on the left and randomized scan on the right:
pip install -r requirements.txt
Then :
main.py --findsigma True --alpha 0.0 #etc...
The arguments available are :
alpha
: The alpha parameter of the Ising Model, default value is 0beta
: The beta parameter of the Ising Model, default value is 1.3sigma
: Variance of the gaussian noise, default value is 179 (for 8 bit images)findsigma
: If set to True, the denoising will be done without being given the value of sigma, default value Falseg
: If set to true a gif will be produced. Default value to True.b
: Number of burn in steps. Default to 40ns
: Number of sampling steps. Default to 5imp
: Path of the raw image. Default to 'data/input/test_img.jpeg'