-
Notifications
You must be signed in to change notification settings - Fork 67
/
train_transformed_rays.py
709 lines (641 loc) · 29.3 KB
/
train_transformed_rays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
import argparse
import glob
import os
import time
import sys
sys.path.insert(1, './nerf')
os.environ['GPU_DEBUG']='3'
import numpy as np
import torch
import torchvision
import yaml
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm, trange
import matplotlib.pyplot as plt
from nerf.load_flame import load_flame_data
from nerf import (CfgNode, get_embedding_function, get_ray_bundle, img2mse,
load_llff_data, meshgrid_xy, models,
mse2psnr, run_one_iter_of_nerf, dump_rays, GaussianSmoothing)
#from gpu_profile import gpu_profile
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config", type=str, required=True, help="Path to (.yml) config file."
)
parser.add_argument(
"--load-checkpoint",
type=str,
default="",
help="Path to load saved checkpoint from.",
)
configargs = parser.parse_args()
# Read config file.
cfg = None
with open(configargs.config, "r") as f:
cfg_dict = yaml.load(f, Loader=yaml.FullLoader)
cfg = CfgNode(cfg_dict)
# # (Optional:) enable this to track autograd issues when debugging
# torch.autograd.set_detect_anomaly(True)
# If a pre-cached dataset is available, skip the dataloader.
USE_CACHED_DATASET = False
train_paths, validation_paths = None, None
images, poses, render_poses, hwf, i_split, expressions = None, None, None, None, None, None
H, W, focal, i_train, i_val, i_test = None, None, None, None, None, None
if hasattr(cfg.dataset, "cachedir") and os.path.exists(cfg.dataset.cachedir):
train_paths = glob.glob(os.path.join(cfg.dataset.cachedir, "train", "*.data"))
validation_paths = glob.glob(
os.path.join(cfg.dataset.cachedir, "val", "*.data")
)
USE_CACHED_DATASET = True
else:
# Load dataset
images, poses, render_poses, hwf, expressions = None, None, None, None, None
if cfg.dataset.type.lower() == "blender":
images, poses, render_poses, hwf, i_split, expressions, _, bboxs = load_flame_data(
cfg.dataset.basedir,
half_res=cfg.dataset.half_res,
testskip=cfg.dataset.testskip,
)
i_train, i_val, i_test = i_split
H, W, focal = hwf
H, W = int(H), int(W)
hwf = [H, W, focal]
if cfg.nerf.train.white_background:
images = images[..., :3] * images[..., -1:] + (1.0 - images[..., -1:])
print("done loading data")
# Seed experiment for repeatability
seed = cfg.experiment.randomseed
np.random.seed(seed)
torch.manual_seed(seed)
# Device on which to run.
if torch.cuda.is_available():
device = "cuda" #+ ":" + str(cfg.experiment.device)
else:
device = "cpu"
encode_position_fn = get_embedding_function(
num_encoding_functions=cfg.models.coarse.num_encoding_fn_xyz,
include_input=cfg.models.coarse.include_input_xyz,
log_sampling=cfg.models.coarse.log_sampling_xyz,
)
encode_direction_fn = None
if cfg.models.coarse.use_viewdirs:
encode_direction_fn = get_embedding_function(
num_encoding_functions=cfg.models.coarse.num_encoding_fn_dir,
include_input=cfg.models.coarse.include_input_dir,
log_sampling=cfg.models.coarse.log_sampling_dir,
)
# Initialize a coarse-resolution model.
model_coarse = getattr(models, cfg.models.coarse.type)(
num_encoding_fn_xyz=cfg.models.coarse.num_encoding_fn_xyz,
num_encoding_fn_dir=cfg.models.coarse.num_encoding_fn_dir,
include_input_xyz=cfg.models.coarse.include_input_xyz,
include_input_dir=cfg.models.coarse.include_input_dir,
use_viewdirs=cfg.models.coarse.use_viewdirs,
num_layers=cfg.models.coarse.num_layers,
hidden_size=cfg.models.coarse.hidden_size,
include_expression=True
)
model_coarse.to(device)
# If a fine-resolution model is specified, initialize it.
model_fine = None
if hasattr(cfg.models, "fine"):
model_fine = getattr(models, cfg.models.fine.type)(
num_encoding_fn_xyz=cfg.models.fine.num_encoding_fn_xyz,
num_encoding_fn_dir=cfg.models.fine.num_encoding_fn_dir,
include_input_xyz=cfg.models.fine.include_input_xyz,
include_input_dir=cfg.models.fine.include_input_dir,
use_viewdirs=cfg.models.fine.use_viewdirs,
num_layers = cfg.models.coarse.num_layers,
hidden_size =cfg.models.coarse.hidden_size,
include_expression=True
)
model_fine.to(device)
###################################
###################################
train_background = False
supervised_train_background = False
blur_background = False
train_latent_codes = True
disable_expressions = False # True to disable expressions
disable_latent_codes = False # True to disable latent codes
fixed_background = True # Do False to disable BG
regularize_latent_codes = True # True to add latent code LOSS, false for most experiments
###################################
###################################
supervised_train_background = train_background and supervised_train_background
# Avg background
#images[i_train]
if train_background:
with torch.no_grad():
avg_img = torch.mean(images[i_train],axis=0)
# Blur Background:
if blur_background:
avg_img = avg_img.permute(2,0,1)
avg_img = avg_img.unsqueeze(0)
smoother = GaussianSmoothing(channels=3, kernel_size=11, sigma=11)
print("smoothed background initialization. shape ", avg_img.shape)
avg_img = smoother(avg_img).squeeze(0).permute(1,2,0)
#avg_img = torch.zeros(H,W,3)
#avg_img = torch.rand(H,W,3)
#avg_img = 0.5*(torch.rand(H,W,3) + torch.mean(images[i_train],axis=0))
background = torch.tensor(avg_img, device=device)
background.requires_grad = True
if fixed_background: # load GT background
print("loading GT background to condition on")
from PIL import Image
background = Image.open(os.path.join(cfg.dataset.basedir,'bg','00050.png'))
background.thumbnail((H,W))
background = torch.from_numpy(np.array(background).astype(np.float32)).to(device)
background = background/255
print("bg shape", background.shape)
print("should be ", images[i_train][0].shape)
assert background.shape == images[i_train][0].shape
else:
background = None
# Initialize optimizer.
trainable_parameters = list(model_coarse.parameters())
if model_fine is not None:
trainable_parameters += list(model_fine.parameters())
if train_background:
#background.requires_grad = True
#trainable_parameters.append(background) # add it later when init optimizer for different lr
print("background.is_leaf " ,background.is_leaf, background.device)
if train_latent_codes:
latent_codes = torch.zeros(len(i_train),32, device=device)
print("initialized latent codes with shape %d X %d" % (latent_codes.shape[0], latent_codes.shape[1]))
if not disable_latent_codes:
trainable_parameters.append(latent_codes)
latent_codes.requires_grad = True
if train_background:
optimizer = getattr(torch.optim, cfg.optimizer.type)(
[{'params':trainable_parameters},
{'params':background, 'lr':cfg.optimizer.lr}],
lr=cfg.optimizer.lr
)
else:
optimizer = getattr(torch.optim, cfg.optimizer.type)(
[{'params':trainable_parameters},
{'params': background, 'lr': cfg.optimizer.lr} ], # this is obsolete but need for continuing training
lr=cfg.optimizer.lr
)
# Setup logging.
logdir = os.path.join(cfg.experiment.logdir, cfg.experiment.id)
os.makedirs(logdir, exist_ok=True)
writer = SummaryWriter(logdir)
# Write out config parameters.
with open(os.path.join(logdir, "config.yml"), "w") as f:
f.write(cfg.dump()) # cfg, f, default_flow_style=False)
# By default, start at iteration 0 (unless a checkpoint is specified).
start_iter = 0
# Load an existing checkpoint, if a path is specified.
if os.path.exists(configargs.load_checkpoint):
checkpoint = torch.load(configargs.load_checkpoint)
model_coarse.load_state_dict(checkpoint["model_coarse_state_dict"])
if checkpoint["model_fine_state_dict"]:
model_fine.load_state_dict(checkpoint["model_fine_state_dict"])
if checkpoint["background"] is not None:
print("loaded bg from checkpoint")
background = torch.nn.Parameter(checkpoint['background'].to(device))
if checkpoint["latent_codes"] is not None:
print("loaded latent codes from checkpoint")
latent_codes = torch.nn.Parameter(checkpoint['latent_codes'].to(device))
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
start_iter = checkpoint["iter"]
# # TODO: Prepare raybatch tensor if batching random rays
# Prepare importance sampling maps
ray_importance_sampling_maps = []
p = 0.9
print("computing boundix boxes probability maps")
for i in i_train:
bbox = bboxs[i]
probs = np.zeros((H,W))
probs.fill(1-p)
probs[bbox[0]:bbox[1],bbox[2]:bbox[3]] = p
probs = (1/probs.sum()) * probs
ray_importance_sampling_maps.append(probs.reshape(-1))
print("Starting loop")
for i in trange(start_iter, cfg.experiment.train_iters):
model_coarse.train()
if model_fine:
model_coarse.train()
rgb_coarse, rgb_fine = None, None
target_ray_values = None
background_ray_values = None
if USE_CACHED_DATASET:
datafile = np.random.choice(train_paths)
cache_dict = torch.load(datafile)
ray_bundle = cache_dict["ray_bundle"].to(device)
ray_origins, ray_directions = (
ray_bundle[0].reshape((-1, 3)),
ray_bundle[1].reshape((-1, 3)),
)
target_ray_values = cache_dict["target"][..., :3].reshape((-1, 3))
select_inds = np.random.choice(
ray_origins.shape[0],
size=(cfg.nerf.train.num_random_rays),
replace=False,
)
ray_origins, ray_directions = (
ray_origins[select_inds],
ray_directions[select_inds],
)
target_ray_values = target_ray_values[select_inds].to(device)
#target_ray_values = target_ray_values[select_inds].to(device)
# ray_bundle = torch.stack([ray_origins, ray_directions], dim=0).to(device)
rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
cache_dict["height"],
cache_dict["width"],
cache_dict["focal_length"],
model_coarse,
model_fine,
ray_origins,
ray_directions,
cfg,
mode="train",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
expressions=expressions
)
else:
img_idx = np.random.choice(i_train)
img_target = images[img_idx].to(device)
pose_target = poses[img_idx, :3, :4].to(device)
if not disable_expressions:
expression_target = expressions[img_idx].to(device) # vector
else: # zero expr
expression_target = torch.zeros(76, device=device)
#bbox = bboxs[img_idx]
if not disable_latent_codes:
latent_code = latent_codes[img_idx].to(device) if train_latent_codes else None
else:
latent_codes = torch.zeros(32, device=device)
#latent_code = torch.zeros(32).to(device)
ray_origins, ray_directions = get_ray_bundle(H, W, focal, pose_target)
coords = torch.stack(
meshgrid_xy(torch.arange(H).to(device), torch.arange(W).to(device)),
dim=-1,
)
# Only randomly choose rays that are in the bounding box !
# coords = torch.stack(
# meshgrid_xy(torch.arange(bbox[0],bbox[1]).to(device), torch.arange(bbox[2],bbox[3]).to(device)),
# dim=-1,
# )
coords = coords.reshape((-1, 2))
# select_inds = np.random.choice(
# coords.shape[0], size=(cfg.nerf.train.num_random_rays), replace=False
# )
# Use importance sampling to sample mainly in the bbox with prob p
select_inds = np.random.choice(
coords.shape[0], size=(cfg.nerf.train.num_random_rays), replace=False, p=ray_importance_sampling_maps[img_idx]
)
select_inds = coords[select_inds]
ray_origins = ray_origins[select_inds[:, 0], select_inds[:, 1], :]
ray_directions = ray_directions[select_inds[:, 0], select_inds[:, 1], :]
#dump_rays(ray_origins, ray_directions)
# batch_rays = torch.stack([ray_origins, ray_directions], dim=0)
target_s = img_target[select_inds[:, 0], select_inds[:, 1], :]
background_ray_values = background[select_inds[:, 0], select_inds[:, 1], :] if (train_background or fixed_background) else None
#if i<10000:
# background_ray_values = None
#background_ray_values = None
then = time.time()
rgb_coarse, _, _, rgb_fine, _, _, weights = run_one_iter_of_nerf(
H,
W,
focal,
model_coarse,
model_fine,
ray_origins,
ray_directions,
cfg,
mode="train",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
expressions = expression_target,
background_prior=background_ray_values,
latent_code = latent_code if not disable_latent_codes else torch.zeros(32,device=device)
)
target_ray_values = target_s
coarse_loss = torch.nn.functional.mse_loss(
rgb_coarse[..., :3], target_ray_values[..., :3]
)
fine_loss = None
if rgb_fine is not None:
fine_loss = torch.nn.functional.mse_loss(
rgb_fine[..., :3], target_ray_values[..., :3]
)
# loss = torch.nn.functional.mse_loss(rgb_pred[..., :3], target_s[..., :3])
loss = 0.0
# if fine_loss is not None:
# loss = fine_loss
# else:
# loss = coarse_loss
latent_code_loss = torch.zeros(1, device=device)
if train_latent_codes and not disable_latent_codes:
latent_code_loss = torch.norm(latent_code) * 0.0005
#latent_code_loss = torch.zeros(1)
background_loss = torch.zeros(1, device=device)
if supervised_train_background:
background_loss = torch.nn.functional.mse_loss(
background_ray_values[..., :3], target_ray_values[..., :3], reduction='none'
).sum(1)
background_loss = torch.mean(background_loss*weights) * 0.001
loss = coarse_loss + (fine_loss if fine_loss is not None else 0.0)
psnr = mse2psnr(loss.item())
#loss_total = loss #+ (latent_code_loss if latent_code_loss is not None else 0.0)
loss = loss + (latent_code_loss*10 if regularize_latent_codes else 0.0)
loss_total = loss + (background_loss if supervised_train_background is not None else 0.0)
#loss.backward()
loss_total.backward()
#psnr = mse2psnr(loss.item())
optimizer.step()
optimizer.zero_grad()
# Learning rate updates
num_decay_steps = cfg.scheduler.lr_decay * 1000
lr_new = cfg.optimizer.lr * (
cfg.scheduler.lr_decay_factor ** (i / num_decay_steps)
)
for param_group in optimizer.param_groups:
param_group["lr"] = lr_new
if i % cfg.experiment.print_every == 0 or i == cfg.experiment.train_iters - 1:
tqdm.write(
"[TRAIN] Iter: "
+ str(i)
+ " Loss: "
+ str(loss.item())
+ " BG Loss: "
+ str(background_loss.item())
+ " PSNR: "
+ str(psnr)
+ " LatentReg: "
+ str(latent_code_loss.item())
)
#writer.add_scalar("train/loss", loss.item(), i)
if train_latent_codes:
writer.add_scalar("train/code_loss", latent_code_loss.item(), i)
if supervised_train_background:
writer.add_scalar("train/bg_loss", background_loss.item(), i)
writer.add_scalar("train/coarse_loss", coarse_loss.item(), i)
if rgb_fine is not None:
writer.add_scalar("train/fine_loss", fine_loss.item(), i)
writer.add_scalar("train/psnr", psnr, i)
# Validation
if (
i % cfg.experiment.validate_every == 0
or i == cfg.experiment.train_iters - 1 and False
):
#torch.cuda.empty_cache()
tqdm.write("[VAL] =======> Iter: " + str(i))
model_coarse.eval()
if model_fine:
model_coarse.eval()
start = time.time()
with torch.no_grad():
rgb_coarse, rgb_fine = None, None
target_ray_values = None
if USE_CACHED_DATASET:
datafile = np.random.choice(validation_paths)
cache_dict = torch.load(datafile)
rgb_coarse, _, _, rgb_fine, _, weights = run_one_iter_of_nerf(
cache_dict["height"],
cache_dict["width"],
cache_dict["focal_length"],
model_coarse,
model_fine,
cache_dict["ray_origins"].to(device),
cache_dict["ray_directions"].to(device),
cfg,
mode="validation",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
expressions = expression_target,
latent_code = torch.zeros(32, device=device)
)
target_ray_values = cache_dict["target"].to(device)
else:
# Do all validation set...
loss = 0
for img_idx in i_val[:2]:
img_target = images[img_idx].to(device)
#tqdm.set_description('val im %d' % img_idx)
#tqdm.refresh() # to show immediately the update
# # save val image for debug ### DEBUG ####
# #GT = target_ray_values[..., :3]
# import PIL.Image
# #img = GT.permute(2, 0, 1)
# # Conver to PIL Image and then np.array (output shape: (H, W, 3))
# #im_numpy = img_target.detach().cpu().numpy()
# #im_numpy = np.array(torchvision.transforms.ToPILImage()(img_target.detach().cpu()))
#
# # im = PIL.Image.fromarray(im_numpy)
# im = img_target
# im = im.permute(2, 0, 1)
# img = np.array(torchvision.transforms.ToPILImage()(im.detach().cpu()))
# im = PIL.Image.fromarray(img)
# im.save('val_im_target_debug.png')
# ### DEBUG #### END
pose_target = poses[img_idx, :3, :4].to(device)
ray_origins, ray_directions = get_ray_bundle(
H, W, focal, pose_target
)
rgb_coarse, _, _, rgb_fine, _, _ ,weights= run_one_iter_of_nerf(
H,
W,
focal,
model_coarse,
model_fine,
ray_origins,
ray_directions,
cfg,
mode="validation",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
expressions = expression_target,
background_prior = background.view(-1,3) if (train_background or fixed_background) else None,
latent_code = torch.zeros(32).to(device) if train_latent_codes or disable_latent_codes else None,
)
#print("did one val")
target_ray_values = img_target
coarse_loss = img2mse(rgb_coarse[..., :3], target_ray_values[..., :3])
curr_loss, curr_fine_loss = 0.0, 0.0
if rgb_fine is not None:
curr_fine_loss = img2mse(rgb_fine[..., :3], target_ray_values[..., :3])
curr_loss = curr_fine_loss
else:
curr_loss = coarse_loss
loss += curr_loss + curr_fine_loss
loss /= len(i_val)
psnr = mse2psnr(loss.item())
writer.add_scalar("validation/loss", loss.item(), i)
writer.add_scalar("validation/coarse_loss", coarse_loss.item(), i)
writer.add_scalar("validation/psnr", psnr, i)
writer.add_image(
"validation/rgb_coarse", cast_to_image(rgb_coarse[..., :3]), i
)
if rgb_fine is not None:
writer.add_image(
"validation/rgb_fine", cast_to_image(rgb_fine[..., :3]), i
)
writer.add_scalar("validation/fine_loss", fine_loss.item(), i)
writer.add_image(
"validation/img_target",
cast_to_image(target_ray_values[..., :3]),
i,
)
if train_background or fixed_background:
writer.add_image(
"validation/background", cast_to_image(background[..., :3]), i
)
writer.add_image(
"validation/weights", (weights.detach().cpu().numpy()), i, dataformats='HW'
)
tqdm.write(
"Validation loss: "
+ str(loss.item())
+ " Validation PSNR: "
+ str(psnr)
+ " Time: "
+ str(time.time() - start)
)
#gpu_profile(frame=sys._getframe(), event='line', arg=None)
if i % cfg.experiment.save_every == 0 or i == cfg.experiment.train_iters - 1:
checkpoint_dict = {
"iter": i,
"model_coarse_state_dict": model_coarse.state_dict(),
"model_fine_state_dict": None
if not model_fine
else model_fine.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"loss": loss,
"psnr": psnr,
"background": None
if not (train_background or fixed_background)
else background.data,
"latent_codes": None if not train_latent_codes else latent_codes.data
}
torch.save(
checkpoint_dict,
os.path.join(logdir, "checkpoint" + str(i).zfill(5) + ".ckpt"),
)
tqdm.write("================== Saved Checkpoint =================")
print("Done!")
def cast_to_image(tensor):
# Input tensor is (H, W, 3). Convert to (3, H, W).
tensor = tensor.permute(2, 0, 1)
tensor = tensor.clamp(0.0,1.0)
# Conver to PIL Image and then np.array (output shape: (H, W, 3))
img = np.array(torchvision.transforms.ToPILImage()(tensor.detach().cpu()))
# Map back to shape (3, H, W), as tensorboard needs channels first.
img = np.moveaxis(img, [-1], [0])
return img
def handle_pdb(sig, frame):
import pdb
pdb.Pdb().set_trace(frame)
if __name__ == "__main__":
import signal
print("before signal registration")
signal.signal(signal.SIGUSR1, handle_pdb)
print("after registration")
#sys.settrace(gpu_profile)
main()
"""
# Validation
if (
i % cfg.experiment.validate_every == 0
or i == cfg.experiment.train_iters - 1
):
tqdm.write("[VAL] =======> Iter: " + str(i))
model_coarse.eval()
if model_fine:
model_coarse.eval()
start = time.time()
with torch.no_grad():
rgb_coarse, rgb_fine = None, None
target_ray_values = None
if USE_CACHED_DATASET:
datafile = np.random.choice(validation_paths)
cache_dict = torch.load(datafile)
rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
cache_dict["height"],
cache_dict["width"],
cache_dict["focal_length"],
model_coarse,
model_fine,
cache_dict["ray_origins"].to(device),
cache_dict["ray_directions"].to(device),
cfg,
mode="validation",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
)
target_ray_values = cache_dict["target"].to(device)
else:
img_idx = np.random.choice(i_val)
img_target = images[img_idx].to(device)
# # save val image for debug ### DEBUG ####
# #GT = target_ray_values[..., :3]
# import PIL.Image
# #img = GT.permute(2, 0, 1)
# # Conver to PIL Image and then np.array (output shape: (H, W, 3))
# #im_numpy = img_target.detach().cpu().numpy()
# #im_numpy = np.array(torchvision.transforms.ToPILImage()(img_target.detach().cpu()))
#
# # im = PIL.Image.fromarray(im_numpy)
# im = img_target
# im = im.permute(2, 0, 1)
# img = np.array(torchvision.transforms.ToPILImage()(im.detach().cpu()))
# im = PIL.Image.fromarray(img)
# im.save('val_im_target_debug.png')
# ### DEBUG #### END
pose_target = poses[img_idx, :3, :4].to(device)
ray_origins, ray_directions = get_ray_bundle(
H, W, focal, pose_target
)
rgb_coarse, _, _, rgb_fine, _, _ = run_one_iter_of_nerf(
H,
W,
focal,
model_coarse,
model_fine,
ray_origins,
ray_directions,
cfg,
mode="validation",
encode_position_fn=encode_position_fn,
encode_direction_fn=encode_direction_fn,
)
target_ray_values = img_target
coarse_loss = img2mse(rgb_coarse[..., :3], target_ray_values[..., :3])
loss, fine_loss = 0.0, 0.0
if rgb_fine is not None:
fine_loss = img2mse(rgb_fine[..., :3], target_ray_values[..., :3])
loss = fine_loss
else:
loss = coarse_loss
loss = coarse_loss + fine_loss
psnr = mse2psnr(loss.item())
writer.add_scalar("validation/loss", loss.item(), i)
writer.add_scalar("validation/coarse_loss", coarse_loss.item(), i)
writer.add_scalar("validataion/psnr", psnr, i)
writer.add_image(
"validation/rgb_coarse", cast_to_image(rgb_coarse[..., :3]), i
)
if rgb_fine is not None:
writer.add_image(
"validation/rgb_fine", cast_to_image(rgb_fine[..., :3]), i
)
writer.add_scalar("validation/fine_loss", fine_loss.item(), i)
writer.add_image(
"validation/img_target",
cast_to_image(target_ray_values[..., :3]),
i,
)
tqdm.write(
"Validation loss: "
+ str(loss.item())
+ " Validation PSNR: "
+ str(psnr)
+ " Time: "
+ str(time.time() - start)
)
"""