Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add flux points computation methods #628

Merged
merged 5 commits into from
Jul 15, 2016
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 58 additions & 0 deletions examples/example_calculate_fluxpoints.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
"""Compute flux points

This is an example script that show how to compute flux points in Gammapy.
TODO: Refactor and add to FluxPointsComputation class or so
"""

from gammapy.spectrum import (
SpectrumObservation,
SpectrumFit,
DifferentialFluxPoints,
SpectrumFitResult,
SpectrumResult
)
import astropy.units as u
import numpy as np
import copy
import matplotlib.pyplot as plt

obs = SpectrumObservation.read('$GAMMAPY_EXTRA/datasets/hess-crab4_pha/pha_obs23523.fits')

fit = SpectrumFit(obs)
fit.run()
best_fit = copy.deepcopy(fit.result[0].fit)

# Define Flux points binning
emin = np.log10(obs.lo_threshold.to('TeV').value)
emax = np.log10(40)
binning = np.logspace(emin, emax, 8) * u.TeV

# Fix index
fit.model.gamma.freeze()

# Fit norm in bands
diff_flux = list()
diff_flux_err = list()
e_err_hi = list()
e_err_lo = list()
energy = list()
for ii in range(len(binning)-1):
energ= np.sqrt(binning[ii] * binning[ii+1])
energy.append(energ)
e_err_hi.append(binning[ii+1] - energ)
e_err_lo.append(energ - binning[ii])
fit.fit_range = binning[[ii,ii+1]]
fit.run()
res = fit.result[0].fit
diff_flux.append(res.model(energ).to('cm-2 s-1 TeV-1'))
err = res.model_with_uncertainties(energ.to('keV').value)
diff_flux_err.append(err.s * u.Unit('cm-2 s-1 keV-1'))

points = DifferentialFluxPoints.from_arrays(energy=energy, diff_flux=diff_flux,
diff_flux_err_hi=diff_flux_err,
diff_flux_err_lo=diff_flux_err,
energy_err_hi = e_err_hi,
energy_err_lo = e_err_lo)
result = SpectrumResult(fit=best_fit, points=points)
result.plot_spectrum()
plt.show()
20 changes: 12 additions & 8 deletions gammapy/spectrum/flux_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,17 +63,21 @@ def from_arrays(cls, energy, diff_flux, energy_err_hi=None,
# Set errors to zero by default
def_f = np.zeros(len(energy)) * diff_flux.unit
def_e = np.zeros(len(energy)) * energy.unit
energy_err_hi = def_e if energy_err_hi is None else energy_err_hi
energy_err_lo = def_e if energy_err_lo is None else energy_err_lo
diff_flux_err_hi = def_f if diff_flux_err_hi is None else diff_flux_err_hi
diff_flux_err_lo = def_f if diff_flux_err_lo is None else diff_flux_err_lo
if energy_err_hi is None:
energy_err_hi = def_e
if energy_err_lo is None:
energy_err_lo = def_e
if diff_flux_err_hi is None:
diff_flux_err_hi = def_f
if diff_flux_err_lo is None:
diff_flux_err_lo = def_f

t['ENERGY'] = energy
t['ENERGY_ERR_HI'] = energy_err_hi
t['ENERGY_ERR_LO'] = energy_err_lo
t['ENERGY_ERR_HI'] = Quantity(energy_err_hi)
t['ENERGY_ERR_LO'] = Quantity(energy_err_lo)
t['DIFF_FLUX'] = diff_flux
t['DIFF_FLUX_ERR_HI'] = diff_flux_err_hi
t['DIFF_FLUX_ERR_LO'] = diff_flux_err_lo
t['DIFF_FLUX_ERR_HI'] = Quantity(diff_flux_err_hi)
t['DIFF_FLUX_ERR_LO'] = Quantity(diff_flux_err_lo)
return cls(t)


Expand Down
81 changes: 33 additions & 48 deletions gammapy/spectrum/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,58 +34,27 @@ def __str__(self):
ss += '\n{parname} : {parval:.3g}'.format(**locals())
return ss

def to_sherpa(self, name='default'):
"""Return `~sherpa.models.ArithmeticModel`

Parameters
----------
name : str, optional
Name of the sherpa model instance
"""
import sherpa.models as m
if isinstance(self, PowerLaw):
model = m.PowLaw1D('powlaw1d.' + name)
model.gamma = self.parameters.index.value
else:
raise NotImplementedError

model.ref = self.parameters.reference.to('keV').value
model.ampl = self.parameters.amplitude.to('cm-2 s-1 keV-1').value

return model

@classmethod
def from_sherpa(cls, model):
"""Create `~gammapy.spectrum.models.SpectrumModel` from
`~sherpa.models.ArithmeticModel`

Parameters
----------
model : `~sherpa.models.ArithmeticModel`
Sherpa model
"""
from . import SpectrumFit
pardict = dict(gamma = ['index', u.Unit('')],
ref = ['reference', u.keV],
ampl = ['amplitude', SpectrumFit.FLUX_FACTOR * u.Unit('cm-2 s-1 keV-1')])
kwargs = dict()

for par in model.pars:
name = par.name
kwargs[pardict[name][0]] = par.val * pardict[name][1]

return cls(**kwargs)

def to_dict(self):
"""Serialize to dict"""
retval = dict()

retval['name'] = self.__class__.__name__
retval['parameters'] = list()
for parname, parval in self.parameters.items():
retval[parname] = str(parval)
retval['parameters'].append(dict(name=parname,
val=parval.value,
unit=str(parval.unit)))
return retval

def plot(self, ax=None, energy_range=[0.1, 10] * u.TeV,
@classmethod
def from_dict(cls, val):
"""Serialize from dict"""
kwargs = dict()
for _ in val['parameters']:
kwargs[_['name']] = _['val'] * u.Unit(_['unit'])
return cls(**kwargs)

def plot(self, energy_range, ax=None,
energy_unit='TeV', flux_unit='cm-2 s-1 TeV-1',
energy_power=0, n_points=100, **kwargs):
"""Plot `~gammapy.spectrum.SpectralModel`
Expand All @@ -102,9 +71,9 @@ def plot(self, ax=None, energy_range=[0.1, 10] * u.TeV,
Unit of the energy axis
flux_unit : str, `~astropy.units.Unit`, optional
Unit of the flux axis
energy_power : int
energy_power : int, optional
Power of energy to multiply flux axis with
n_points : int
n_points : int, optional
Number of evaluation nodes

Returns
Expand Down Expand Up @@ -150,8 +119,8 @@ class PowerLaw(SpectralModel):
"""
def __init__(self, index, amplitude, reference):
self.parameters = Bunch(index = index,
amplitude = amplitude.to('cm-2 s-1 TeV-1'),
reference = reference.to('TeV'))
amplitude = amplitude,
reference = reference)

@staticmethod
def evaluate(energy, index, amplitude, reference):
Expand All @@ -168,6 +137,22 @@ def integral(self, emin, emax):

return prefactor * (upper - lower)

def to_sherpa(self, name='default'):
"""Return `~sherpa.models.PowLaw1d`

Parameters
----------
name : str, optional
Name of the sherpa model instance
"""
import sherpa.models as m
model = m.PowLaw1D('powlaw1d.' + name)
model.gamma = self.parameters.index.value
model.ref = self.parameters.reference.to('keV').value
model.ampl = self.parameters.amplitude.to('cm-2 s-1 keV-1').value

return model


class ExponentialCutoffPowerLaw(SpectralModel):
"""Spectral exponential cutoff power-law model.
Expand Down
Loading