Pytorch implementation of MIAN: Multi-source Information-regularized Adaptation Network. Provided as a supplementary code for ICCV 2021. Pytorch version: 1.4.0
- We support three multi-domain adaptation datasets:
- Every datasets should be downloaded in data/ directory following the order below:
data/{office/office_home}/{domain}/{class}/{images}
- Digits-Five require .pkl files.
data/digits/{domain}/{train/val}.pkl
- every words in path should be written in lower-case.
- Due to memory issue, data and pretrained weights are not provided at this moment.
python3 main.py --gpu 0 --task office --target Amazon --exp_name Amazon_test \
--advcoeff 0.1 --SVD_ld 0.0001 --no_MCD
- advcoeff:
$\lambda_0$ in paper - SVD_ld:
$\mu_0$ in paper- Set to 0 for Vanila MIAN.
- no_MCD: Run main.py without Maximum Classifier Discrepancy (MCD, Saito et al., 2018)
python3 main.py --gpu 0 --task office --target Amazon --partial_domain Amazon DSLR --exp_name Amazon_test_partial_DSLR \
--advcoeff 0.1 --SVD_ld 0.0001 --no_MCD
- partial_domain: Specify domains to be utilized. (Includes target domain)