This is a library for complex numbers calculations in javascript using plain objects immutably.
It has been designed to be used for geometry applications, for which a little API has been included.
Any object with the properties re
or im
(or r
and arg
) qualifies as a complex number for this API, so there are no creation methods for them.
Function | Explanation |
---|---|
csum(c0 : complex, c1: complex) |
Returns c0 plus c1 |
csub(c0 : complex, c1: complex) |
Returns the c0 minus c1 |
cmul(c0 : complex, c1: complex) |
Returns c0 times c1 |
cdiv(c0 : complex, c1: complex) |
Returns c0 over c1 |
cpow(c0 : complex, n: number) |
Returns c0 to the power of n |
conjugate(c : complex) |
Returns the conjugate of c |
cmod(c : complex) |
Returns the modulus of c |
cmod2(c : complex) |
Returns the square modulus of c |
isCartesian(c : complex) |
Returns true if c is can behave as a cartesian complex number |
isPolar(c : complex) |
Returns true if c is can behave as a polar complex number |
re(c : complex) |
Returns the real part of c |
im(c : complex) |
Returns the imaginary part of c |
r(c : complex) |
Returns the modulus of c |
arg(c : complex) |
Returns the argument of c |
cequals(c0 : complex, c1: complex) |
Returns true if c0 and c1 are equal |
Function | Explanation |
---|---|
vector(x : number, y : number) |
Returns a plain object such as {re: x, im: y} |
distance(c0 : complex, c1: complex) |
Returns the euclidian distance between c0 and c1 |
translate(c : complex, translation : complex) |
Translates c by summing translation |
rotate(c : complex, delta : number, pivot = {re: 0, im: 0}) |
Rotates c around pivot for delta radians |
scale(c : complex, factor : number, pivot = {re: 0, im: 0}) |
Scales c from pivot multiplying by factor |
Creating a complex number is as simple as:
// Cartesian form
const c_cartesian = {
re: 1,
im; 0
};
// Polar form
const c_polar = {
r: 1,
arg: Math.PI / 2
};
Both forms can be mixed, and the form of the first number will be preserved:
import {csum} from 'complexjs';
csum(c_cartesian, c_polar); // => {re: 1, im: 1}
csum(c_polar, c_cartesian); // => {r: 1.414, arg: 0.785}
All the basic functions are provided. All of them are pure functions:
import {
cmul,
cdivpow cmod,
conjugate
} from 'complexjs';
cmul(c_cartesian, c_polar); // => {re: 0, im: 1}
cdiv(c_cartesian, c_polar); // => {re: 0, im: -1}
cmod(c_cartesian); // => 1
conjugate(c_polar); // => {r: 1, arg: - 1.5707}
The API is designed so that any object can be passed to the functions, and any property other than re
and im
(or r
and arg
) will remain unchanged. This can be useful to compose plain objects.
const c_object = {
rgb: [255, 255, 255],
re: 1,
im: 1
};
const c_number = {
re: 5,
im: -1
};
csum(c_object, c_number) // => {rgb: [255, 255, 255], re: 6, im: 0}
In case both objects have properties, they will be merged. The first parameter will override the second one if the have a property with the same name.
Complex numbers serve as an elegant representation of 2d geometry. To make its use even simpler, some methods have been created to wrap the algebra to match its geometric meaning.
vector(1, 2) // => {re: 1, im: 2}
const square = [
vector(0, 0),
vector(1, 0),
vector(1, 1),
vector(0, 1)
];
const scaledSquare = square.map(c => scale(c, 2));
const translatedSquare = scaledSquare.map(c => translate(c, vector(-1, -1)));
const rotatedSquare = translatedSquare.map(c => rotate(c, Math.PI / 2));
// => [
// vector(1, -1),
// vector(1, 1),
// vector(-1, 1),
// vector(-1, -1)
// ];