Skip to content
/ SEBA Public

Sparse EigenBasis Approximation: post-processing of spectral clustering to disentangle multiple features

Notifications You must be signed in to change notification settings

gfroyland/SEBA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 

Repository files navigation

SEBA

Sparse EigenBasis Approximation -- Code for finding a sparse basis for the span of an input collection of vectors.

Usage

S=SEBA(V), where the columns of V are input data vectors and the columns of S are output sparse vectors. The column space of S approximates the column space of V, with the columns of S chosen to be sparse. Usage of SEBA.m and other code in the repository is illustrated in the journal article below.

Applications

SEBA is useful in all settings where individual features need to be separated or disentangled from a generic basis of data vectors. For example, as a post-processing step for spectral clustering, replacing e.g. k-means or other methods that enforce a partitioning of the data. SEBA is specifically designed to not enforce a partition of the data, although it should find a partition if this is appropriate. Likelihood of membership in a cluster/feature is obtained/retained, in contrast to k-means.

Reference

Gary Froyland, Christopher P. Rock, and Konstantinos Sakellariou. Sparse eigenbasis approximation: multiple feature extraction across spatiotemporal scales with application to coherent set identification. Communications in Nonlinear Science and Numerical Simulation, 77:81-107, 2019. https://arxiv.org/abs/1812.02787

About

Sparse EigenBasis Approximation: post-processing of spectral clustering to disentangle multiple features

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published