Skip to content

ggonzalezp/hyperfoods

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

hyperfoods

Code repository for 'Predicting Anticancer Hyperfoods with Graph Convolutional Networks'

  1. Extract dataset and install libraries
tar -xzvf dataset.tar.gz
conda create --name hyperfoods python=3.6.9 pandas=0.25.1 matplotlib=3.1.2
conda activate hyperfoods
pip install pip==19.3
Adapt the following ones to your version of cuda
conda install pytorch=1.5.0 torchvision=0.6.0 cudatoolkit=10.1 -c pytorch
pip install torch-scatter==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
pip install torch-sparse==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
pip install torch-cluster==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
pip install torch-spline-conv==latest+cu101 -f https://pytorch-geometric.com/whl/torch-1.5.0.html
pip install torch-geometric==1.4.3
pip install hickle
pip install torchbnn
pip install captum==0.1.0
  1. Preprocess data
python preprocess.py
  1. Run the model

Model with Chebyshev filter (cross-validation to optimize hyperparameters):

python ChebModel_CV_hpsearch.py --out_dir 'cheb_nlayers_2_hidden_8' --device_idx 3 --norm False --num_layers 2 --hidden_gcn 8 --epochs 100 --dataset_dir 'dataset' 

3. Compute attributions
python attributions_and_gsea.py --base_outdir 'attribution_recall_cheb_nlayers_2_hidden_8'  --device_idx 3 --norm False --num_layers 2 --hidden_gcn 8  --model_path 'cheb_nlayers_2_hidden_8' --model_type 'cheb' 

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published