Skip to content

Experiments recreating the Neural Machine Translation experiments with bidirectional encoder and attention modules.

License

Notifications You must be signed in to change notification settings

giancds/tsf_nmt

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

59 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Given that I haven't been working on this project for a while and Tensorflow is under havy development, my code got oudated. I'm planning to restart working on it at early January (2017). If you're insterestd on it, please check it again later on Jnauary, 2017.

Thanks.

These are my experiments re-implementing the "Effective Approaches to Attention-based Neural Machine Translation" paper by Luong et al. (2015)

We are also integrating some of the techniques described in "On Using Very Large Target Vocabulary for Neural Machine Translation" by Jean et al. (2015) using TensorFlow.

I'm heavily relying on Tensorflow's seq2seq interfaces to construct the models.

I'm following the PEP8 conventions for coding with one change: I'm using lines 100 characters long. (Sorry python purists).

This is a work in progress and include some of my experiments with attentional models (e.g. an hybrid including both global and local attention with a feedback gate), and the code is not polished. Should not be used in production.

Features (so far):
Dependencies (so far):

About

Experiments recreating the Neural Machine Translation experiments with bidirectional encoder and attention modules.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages